

Zero Bugs Found? Hold My Beer AFL! How to Improve
Coverage-guided Fuzzing and Find New Zero-days in Tough

Targets

Maksim Shudrak
Security Researcher

Salesforce

 DEF CON 27

About me

● Offensive Security Researcher at Salesforce Red Team
● Projects:

○ EAOS: Extremely Abstract Operating System for Malware Analysis (at
IBM Research 2015-2017)

○ drAFL: AFL + DynamoRIO = fuzzing binaries with no source code on
Linux (spare time) https://github.com/mxmssh/drAFL

○ Contributions: drltrace, winAFL, DynamoRIO, DrMemory, Ponce
○ PhD on vulnerability research in machine code

● Speaker:

3

https://github.com/mxmssh/drAFL

Outline

I. Introduction

II. What is coverage-guided fuzzing ?

III. Downsides of AFL and similar fuzzers

IV. Introducing Manul

V. DEMO

VI. Case Studies + Vulnerabilities

VII. Conclusion & Future Work

4

What is Fuzzing?

5

AAAAA

What is Fuzzing?

6

AAAAA

What is Fuzzing?

7

BAAAA

What is Fuzzing?

8

CAAAA

What is Fuzzing?

9

PAAAA

What is Fuzzing?

10

PWNIT

What is Fuzzing?

11

PWNIT

Very unlikely!

What is Coverage-Guided Fuzzing?

12

AAAAA

What is Coverage-Guided Fuzzing?

13

AAAAA

What is Coverage-Guided Fuzzing?

14

BAAAA

What is Coverage-Guided Fuzzing?

15

CAAAA

What is Coverage-Guided Fuzzing?

16

PAAAA

What is Coverage-Guided Fuzzing?

17

AAAAA
PAAAA

Input queue

What is Coverage-Guided Fuzzing?

18

AAAAA
PBAAA

Input queue

What is Coverage-Guided Fuzzing?

19

AAAAA
PCAAA

Input queue

What is Coverage-Guided Fuzzing?

20

AAAAA
PWAAA

Input queue

What is Coverage-Guided Fuzzing?

21

AAAAA
PAAAA

Input queue

PWAAA

What is Coverage-Guided Fuzzing?

22

AAAAA
PAAAA

Input queue

PWBAA

What is Coverage-Guided Fuzzing?

23

AAAAA
PAAAA

Input queue

PWNAA

What is Coverage-Guided Fuzzing?

24

AAAAA
PAAAA

Input queue

PWNAA
PWNBA

What is Coverage-Guided Fuzzing?

25

AAAAA
PAAAA

Input queue

PWNAA
PWNIA

What is Coverage-Guided Fuzzing?

26

AAAAA
PAAAA

Input queue

PWNAA
PWNIA
PWNIB

What is Coverage-Guided Fuzzing?

27

AAAAA
PAAAA

Input queue

PWNAA
PWNIA
PWNIC

What is Coverage-Guided Fuzzing?

28

AAAAA
PAAAA

Input queue

PWNAA
PWNIA
PWNIT

American Fuzzy Lop aka AFL

29
https://habr.com/ru/company/dsec/blog/449134/

https://habr.com/ru/company/dsec/blog/449134/

30

31

32

33

Most Popular Languages in July 2019

34 https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

Fuzzing is Very Hot Today!

35

of

 p
ub

li
ca

ti
on

s

OSS-Fuzz Project

● ~160 open-source projects
● ~half-trillion test cases per week

Open Issues Count per Month

36

Downsides. Volatile Paths

37

AAAAAAAAA

Downsides. Volatile Paths

38

AAAAAAAAA

ABAAAAAAA

Downsides. Volatile Paths

39

AAAAAAAAA

ABAAAAAAA

ABAAAAAAA

Downsides. Volatile Paths

40

AAAAAAAAA

ABAAAAAAA

ABAAAAAAA

Downsides. Volatile Paths

41

ABAAAAAAA

ABAAAAAAA

Downsides. Volatile Paths

42

Downsides. Parallelization algorithm

● Parallelization is an obvious solution to speed up fuzzing and find
more bugs.

● AFL was not designed to be parallel fuzzer

43

AFL master folder AFL slave #1 AFL slave #2

Downsides. Parallelization algorithm

● Parallelization is an obvious solution to speed up fuzzing and find
more bugs.

● AFL was not designed to be parallel fuzzer

44

AFL master folder AFL slave #1 AFL slave #2

Downsides. Parallelization algorithm

● Parallelization is an obvious solution to speed up fuzzing and find
more bugs.

● AFL was not designed to be parallel fuzzer

45

AFL master folder AFL slave #1 AFL slave #2

Downsides. Parallelization algorithm

● Parallelization is an obvious solution to speed up fuzzing and find
more bugs.

● AFL was not designed to be parallel fuzzer

46

AFL master folder AFL slave #1 AFL slave #2

Downsides. Parallelization algorithm

● Parallelization is an obvious solution to speed up fuzzing and find
more bugs.

● AFL was not designed to be parallel fuzzer

47

AFL master folder AFL slave #1 AFL slave #2

Network apps fuzzing. Current situation

48

● Linux:
○ AFL’s forks, honggfuzz and blind fuzzers

● Windows
○ winAFL network mode

● OS X
○ honggfuzz?

Windows applications fuzzing

49

winAFL clang (libfuzzer/honggfuzz)

OS X applications fuzzing

● Source code is required. Target should be able
to compile with clang

● DynamoRIO has no official support of OS X
● Intel PIN has partial OS X support

50

Some Related Works & Tools

● The author is not the first one who wants to improve AFL.
○ Userland: AFLSmart, AFLFast, winAFL, libfuzzer, driller, QSYM and others.
○ Kernel: syzkaller, kAFL, TriforceAFL and others.

● Systematic research on all existing fuzzers:
○ Valentin J.M. Manes, Hyung Seok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Edward

J. Schwartz, Maverick Woo Fuzzing: Art, Science, and Engineering. arXiv:1812.00140
preprint.

● Some Presentations at DEF CON/BlackHat:
○ Mateusz Jurczyk. Effective File Format Fuzzing - Thoughts, Techniques and

Results. BlackHat EU London. 2016.
○ Kang Li. AFL's Blindspot and How to Resist AFL Fuzzing for Arbitrary ELF

Binaries. BlackHat USA 2018.
○ Jonathan Metzman. Going Beyond Coverage-Guided Fuzzing with Structured

Fuzzing. Black Hat USA 2019.

51

State-of-the-art Userland Fuzzers

52

 AFL
winAFL

HongFuzz libFuzzer Desired fuzzer

Network fuzzing No (Unix)
Yes (Windows)

Yes No Yes
(all platforms)

Volatile Paths No No No Yes

Multiple Mutation
Strategies

No No No Yes

Share over network Partial No No Yes

Supported Platform Linux
Windows

Open/NetBSD
GNU/Linux

Windows/Cygwin
Android
OS X

Anywhere where
LLVM exist

Anywhere where
Python exist

Language C C C Python

● Manul - an open-source fuzzer written in pure Python.
○ Easy-to-use, pull and run concept.

○ Coverage-guided fuzzing using AFL-GCC or DBI (Intel Pin or DynamoRIO).

○ Parallel fuzzing is a basic feature.

○ Default mutators.

○ Third-party data mutators (Radamsa + AFL currently supported).

○ Network fuzzing is supported by default.

○ Blackbox binaries fuzzing.

○ Supported: Linux, MacOS (beta) and Windows or any other OS where Python
exist.

Manul Overview

53

Why Manul?

54 Pallas’s Cat (lat. Otocolobus Manul)

Manul Architecture

55

Mutators
(plugins)

Target

Instrumentation
module

User Interface Core Module

Code Coverage
Analysis Module

Manul Network
Module

Shared Memory

Fuzzer

Volatile Paths Detection

56

Run & Calibrate
ABAAAAAAA

Volatile Paths Detection

57

Run & Calibrate
ABAAAAAAA

Volatile Paths Detection

58

Run & Calibrate
ACAAAAAAA

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-schumilo.pdf

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-schumilo.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-schumilo.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-schumilo.pdf

Parallel fuzzing. Python Multiprocessing

59

Main Process

Corpus:

Parallel fuzzing. Python Multiprocessing

60

Main Process

Corpus:

Instance #1 Instance #2 Instance #3

Parallel fuzzing. Python Multiprocessing

61

Main Process

Instance #1 Instance #2 Instance #3

Corpus:

Parallel fuzzing. Python Multiprocessing

62

Main Process

Instance #1 Instance #2 Instance #3

Corpus:

Parallel fuzzing. Python Multiprocessing

63

Main Process

Instance #1 Instance #2 Instance #3 Remote Instance
(Main Process)

Remote
Instance #1

Remote
Instance #2

Parallel fuzzing. Python Multiprocessing

64

Main Process

Instance #1 Instance #2 Instance #3 Remote Instance
(Main Process)

Remote
Instance #1

Remote
Instance #2

65

Main Process

Instance #1 Instance #2 Instance #3 Remote Instance
(Main Process)

Remote
Instance #1

Remote
Instance #2

Target Target Target

Target Target

SHM SHM SHM

SHM SHM

Global shared memory

66

Main Process

Instance #1 Instance #2 Instance #3 Remote Instance
(Main Process)

Remote
Instance #1

Remote
Instance #2

Target Target Target

Target Target

SHM SHM SHM

SHM SHM

Global shared memory

Third Party Mutators

● AFL strategy (ported to Python) and Radamsa (as a shared
library)

Custom Python Mutator:

● def init(fuzzer_id)
● def mutate(data_to_mutate)

67

Network Application Fuzzing (Experimental)

68

Manul Target
TCP|UDP

Manul Target

Test case
(TCP|UDP)

Connect

Client mode

Server mode

Blackbox Binaries Fuzzing

Windows: DynamoRIO: ~x30 overhead
Linux: Intel Pin: ~x45 overhead
 DynamoRIO: ~x20 overhead

69

Manul Target binary

Instrumentation lib

SHM
Coverage Coverage

Test

70

Interface & Logo

71

Command Line Arguments

72

DEMO
(Manul)

73

74

Case Study I. Poppler

● Poppler is an open-source library for
rendering PDF documents on GNU/Linux
● Millions of users across the world. Default package on

Ubuntu

● Integrated with Evince, LibreOffice, Inkscape and many
other applications

● Written in C++
● Participate in OSS-Fuzz program (tough target)

75

Case Study I. Poppler. Fuzzing Setup

● 491 PDF files (same corpus used by OSS-Fuzz)

● 24 hours, 78 parallel jobs

● AFL ver. 2.52b & Manul ver. 0.2

● Intel Xeon CPU E5-2698 v4 @2.20GHz 1TB RAM

76

Case Study I. Execution Speed

77

Case Study I. Paths Found

78

Case Study I. Why Manul outperformed AFL

● Manul corpus parallelization algorithm
demonstrates better performance on large
targets

● Radamsa + AFL is better than only AFL
● Volatile paths suppression seems to work

79

Case Study I. Manul Findings

CVE-2019-9631. 9.8 Critical. Poppler 0.74.0 has a heap-based buffer over-read in the
CairoRescaleBox.cc downsample_row_box_filter function.

CVE-2019-7310. 8.8 High. Poppler 0.74.0. A heap-based buffer over-read (due to an
integer signedness error in the XRef::getEntry function in XRef.cc) allows remote
attackers to cause a denial of service (application crash) or possibly have
unspecified other impact via a crafted PDF document, as demonstrated by pdftocairo.

CVE-2019-9959 (X.X. High) In Poppler (latest), JPXStream::init doesn’t have a check
for negative values of stream length thereby making it possible to allocate large
memory chunk on heap with size controlled by an attacker.

Non-security related:
1.Division by zero in CairoRescalBox::downScaleImage
2.Null-pointer dereference in ExtGState
3.Stack-overflow (recursion) in libcairo

80

Case Study I. Poppler. CVE 2019-9631

81

Case Study I. Poppler. CVE 2019-9631

82

Case Study I. Poppler. CVE 2019-9959

83

Case Study I. Poppler. CVE 2019-9959

84

Case Study I. Poppler. CVE 2019-7310

85

Case Study I. Poppler. CVE 2019-7310

86

Case Study II. Zeek IDS

● Zeek (former Bro) is a world’s most powerful open-source
network analysis framework
○ Thousand of companies use Zeek as IDS
○ JA3 plugin for Zeek is a very powerfull tool to detect

suspicious connections of malware with C2
● BroCon happens in Arlington, VA every October
● Written in C++, very high-quality code, fuzzing was done using

libfuzzer by development team in the past

87

Zeek Fuzzing Wrapper Example

● Implemented for HTTP, IRC, KRB, DNP3, SSH, DNS, ICMP, LOGIN, FTP, IMAP

88

Case Study II. Findings

CVE-2018-17019 (7.5. High). In Zeek IDS through 2.5.5, there is a
DoS in IRC protocol names command parsing in
analyzer/protocol/irc/IRC.cc

CVE-2018-16807 (7.5. High). In Zeek IDS through 2.5.5, there is a
memory leak potentially leading to DoS in
scripts/base/protocols/krb/main.bro in the Kerberos protocol
parser.

CVE-2019-12175. (X.X High). In Zeek IDS, there is a DoS in
Kerberos protocol parser in analyzer/protocol/krb/KRB.cc

89

CVE-2018-16807
#1 0x16d0f10 in binpac::KRB_TCP::proc_krb_kdc_req_arguments(binpac::KRB_TCP::KRB_KDC_REQ*,
analyzer::Analyzer*)
#2 0x16d0994 in binpac::KRB_TCP::KRB_Conn::proc_krb_kdc_req_msg(binpac::KRB_TCP::KRB_KDC_REQ*)
#3 0x16f6038 in binpac::KRB_TCP::KRB_AS_REQ::Parse(unsigned char const*, unsigned char const*,
binpac::KRB_TCP::ContextKRB_TCP*, int)

90

IRC Protocol

91

CVE 2018-16807. Packet Example

Send packet that contains: “353 “ on IRC port 6666

92

CVE-2019-12175
==103310==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000000 (pc 0x55a797d15b75 bp
0x7ffe14590cb0 sp 0x7ffe14590330 T0)
#0 0x55a797d15b74 in binpac::KRB_TCP::proc_padata(binpac::KRB_TCP::KRB_PA_Data_Sequence const*,
analyzer::Analyzer*, bool)
#1 0x55a797d3d36a in binpac::KRB_TCP::proc_krb_kdc_req_arguments(binpac::KRB_TCP::KRB_KDC_REQ*,
analyzer::Analyzer*)
#2 0x55a797d3f61b in binpac::KRB_TCP::KRB_Conn::proc_krb_kdc_req_msg(binpac::KRB_TCP::KRB_KDC_REQ*)
#3 0x55a797d65032 in binpac::KRB_TCP::KRB_AS_REQ::Parse(unsigned char const*, unsigned char const*,
binpac::KRB_TCP::ContextKRB_TCP*, int)
#4 0x55a797d65032 in binpac::KRB_TCP::KRB_PDU::Parse(unsigned char const*, unsigned char const*,
binpac::KRB_TCP::ContextKRB_TCP*)
#5 0x55a797d69717 in binpac::KRB_TCP::KRB_PDU_TCP::ParseBuffer(binpac::FlowBuffer*,
binpac::KRB_TCP::ContextKRB_TCP*)
#6 0x55a797d69717 in binpac::KRB_TCP::KRB_Flow::NewData(unsigned char const*, unsigned char const*)

93

DEMO
(example of CVE 2019-12175 DoS in Zeek)

94

95

List of Bugs Found

96

Bugs Project

CVE-2019-6931, CVE-2019-7310, CVE-2019-9959 Poppler for Linux

CVE-2018-17019, CVE-2018-16807, CVE-2019-12175 Zeek for Linux

CVE-2019-XXXX, CVE-2019-XXXX
Awaiting assignment from MITRE and fix from
maintainer

7-Zip 19.00 for Windows

CVE-2019-XXXX, CVE-2019-XXXX, CVE-2019-XXXX
Awaiting assignment from MITRE and fix from
maintainer

p7zip 16.02 for Linux

CVE-2019-XXXX, CVE-2019-XXXX
Awaiting assignment from MITRE and fix from
maintainer

Unarchiver for MacOS

Discussion & Future Work

● AFL’s forkserver is strongly required

● Add Intel PTrace support

● More mutation algorithms

● + structure-aware fuzzing

● Better MacOS support

● Better network fuzzing support

● CLANG-based instrumentation

97

Conclusion

● Fuzzing is #1 technique for vulnerability research in memory-unsafe
languages

● Manul is a fully functional tool for efficient coverage-guided
fuzzing.
○ Multiple third-party mutators, volatile paths suppression,

efficient parallelization algorithm, blackbox binaries fuzzing

● 13 new bugs in 4 widely-used open-source projects.

● Pull & try! https://github.com/mxmssh/manul

● pip install psutil & git clone https://github.com/mxmssh/manul

98

https://github.com/mxmssh/manul
https://github.com/mxmssh/manul
https://github.com/mxmssh/manul
https://github.com/mxmssh/manul
https://github.com/mxmssh/manul
https://github.com/mxmssh/manul
https://github.com/mxmssh/manul
https://github.com/mxmssh/manul
https://github.com/mxmssh/manul
https://github.com/mxmssh/manul

Thank you!

99

https://github.com/mxmssh/manul

Twitter: https://twitter.com/MShudrak

Linkedin: https://www.linkedin.com/in/mshudrak/

https://github.com/mxmssh/manul
https://github.com/mxmssh/manul
https://github.com/mxmssh/manul
https://github.com/mxmssh/manul
https://github.com/mxmssh/manul
https://github.com/mxmssh/manul
https://twitter3e4tixl4xyajtrzo62zg5vztmjuricljdp2c5kshju4avyoid.onion/MShudrak
https://twitter3e4tixl4xyajtrzo62zg5vztmjuricljdp2c5kshju4avyoid.onion/MShudrak
https://twitter3e4tixl4xyajtrzo62zg5vztmjuricljdp2c5kshju4avyoid.onion/MShudrak
https://twitter3e4tixl4xyajtrzo62zg5vztmjuricljdp2c5kshju4avyoid.onion/MShudrak
https://twitter3e4tixl4xyajtrzo62zg5vztmjuricljdp2c5kshju4avyoid.onion/MShudrak
https://www.linkedin.com/in/mshudrak/
https://www.linkedin.com/in/mshudrak/
https://www.linkedin.com/in/mshudrak/
https://www.linkedin.com/in/mshudrak/
https://www.linkedin.com/in/mshudrak/
https://www.linkedin.com/in/mshudrak/
https://www.linkedin.com/in/mshudrak/

