Next Generation Process
-mulation with Binee

Kyle Gwinnup @switchpOrt
John Holowczak @skipwich
Carbon Black TAU

The Problem: getting information from binaries

Each sample contains some total set of information. Our goal is to extract as
much of it as possible

Core Problems High coverage

Immediate discovery
Few features

Low coverage
Long discovery
Many features

Time/Cost to analyze ——

1. Obfuscation hides much of the info

_

2. Anti-analysis is difficult to keep up with

3. Not all Malware is equal opportunity

Sample coverage

Our Goal: Reduce cost of information extraction

: High coverage
Static + Immediate discovery
Emulation SV ETIET-ETITE

Low coverage
Long discovery
Many features

Time/Cost to analyze

1. Reduce the cost of features
extracted via dynamic analysis

2. Increase total number of features
extracted via static analysis

3. Ideally, do both of these at scale

Sample Coverage ——

The How: Emulation

Extend current emulators by mocking functions, system calls and OS subsystems

Existing PE Emulators

PyAna https://github.com/PyAna/PyAna
Dutas https://github.com/dungtvb43/Dutas
Unicorn_pe https://github.com/hzgst/unicorn pe
Long list of other types of emulators
https://www.unicorn-engine.org/showcase/

https://github.com/PyAna/PyAna
https://github.com/dungtv543/Dutas
https://github.com/hzqst/unicorn_pe
https://www.unicorn-engine.org/showcase/

Requirements: What are we adding/extending from
current work?

1. Mechanism for loading up a PE file with its dependencies
2. Framework for defining function and APl hooks
3.

Mock OS subsystems such as
d. I\/Iemory management
b. Registry
C. File system
d. Userland process structures
4. Mock OS environment configuration file

a. Config file specifies language, keyboard, registry keys, etc...
b. Rapid transition from one Mock OS configuration to another

[1] 0x00401166:
[1] 0x00401167:
[1] 0x0040116b:
[1] 0x0040116c:
[1] ©x00401170:
[1] 0x213fe000:
[1] ©x00401176:
[1] 0x00401178:
[1] 0x00401187:
[1] 0x0040118e:
[1] 0x00401190:
[1] ©x00401191:
[1] ©x00401192:
[1] 0x00401193:
[1] ©x00401195:
[1] 0x004011e6:
[1] oxee401lec:
[1] ©x004011f1:
[1] 0x0040145f:
[1] ©x00401460:
[1] ©x00401462:
[1] 0x00401468:
[1] ©x0040146a:
[1] 0x00401dbf:
[1] ox213f6500:
[1] ©x0040146F:
[1] 0x00401471:
[1] ©x00401473:
[1] ©x00401475:
[1] 0x00401476:
[1] ©x00401478:
[1] 0x0040147d:
[1] 0x00401483:
[1] ©x00401489:
[1] 0x0040148f:
[1] ©x00401495:
[1] 0x0040149b:
[1] 0x004014a2:
[1] ©x004014a9:
[1] 0x004014b0:
[1] 0x004014b7:
[1] 0x004014be:
[1] 0x004014c5:
M1 oxPRLD1 LG

push eax

lea eax, [esp + Ox24]

push eax

push dword ptr [esp + 0x20]

call dword ptr

F WriteFile(hFile = @xa@@@@55a, lpBuffer = @xb7feff1@, nNumberOfBytesToWrite = @xb, lpNumberOfBytesWritten

test eax, eax
jne Oxf

mov
xor
PP
pop
pop ebx

XOF ecx, esp
call ox51

eax, eax
edi
esi

[0x402008]

ecx, dword ptr [esp + Ox84]

cmp ecx, dword ptr [0x403000]

bnd jne 5

bnd jmp @x26e
push ebp

mov ebp, esp
sub esp, 0x324
push 0x17

call @x955

jmp dword ptr

F IsProcessorFeaturePresent(ProcessorFeature

test eax, eax
je 7

push 2

pop ecx

int @x29

mov dword ptr
mov dword ptr
mov dword ptr
mov dword ptr
mov dword ptr
mov dword ptr
mov word ptr

mov word ptr

mov word ptr

mov word ptr

mov word ptr

mov word ptr

pushfd

non dword ntr

[0x402024]

[0x403118],
[0x403114],
[0x403110],
[0x40310c],
[0x403108],
[0x403104],

[0x403130],
[0x403124],
[0x403100],
[ox4030fc],
[0x4030f8],
[0x40304],

rov4sin21221

eax
ecx
edx
ebx
esi
edi
33
cs

€S
fs

25

oxb7feffoc, lpOverlapped = 0x@) = @xb

Binee

Where to start? Parse the PE and DLLs, then map
them into emulation memory...

Build hook table by linking DLLs outside emulator

1. Open PE and all dependencies
2. Update DLL base addresses < OLL! EmulatedM
3. Update relocations fe
4. Build Binee exports lookup table
5. Resolve Import Address Tables l
for each

6. Map PE and DLLs into memory
Binee Address to
Hook table

Overcoming Microsoft's ApiSet abstraction layer

Parse ApiSetSchema.dll (multiple versions) and load proper real dll.

Ox6891e546
Ox6891e54¢c
Ox6891e556
Ox6891e55b
Ox6891e55d

8d8dfbfd
c785f4fd
e8e0010000
84c0
0f85179¢c0100

api-ms-<something>.dll E— AplS(%_tailc;hema —_— kernelbase.dll

lea ecx, [local_205h]

mov dword [local_20ch], @

call sub.api_ms_win_core_libraryloader_11_2_0.d11_LoadLibraryExW_73b
test al, al

Jjne @x6893817a

Geoff Chappell https:.//www.geoffchappell.com/studies/windows/win32/apisetschema/index.htm

https://www.geoffchappell.com/index.htm
https://www.geoffchappell.com/studies/windows/win32/apisetschema/index.htm

What is the minimum that the malware
needs in order to continue proper execution?

0x00401098
0x0040109a
0x0040109f
0x004010a1
0x004010a3
0x004010a5
0x004010aa
0x004010af
0x004010b5
0x004010b9
0x004010bb
0x004010bd
0x004010c?2

6200
6880000000
6202

6200

6200
68000000c0
68c4214000

1500204000

89442410
85c0

7515
68d0214000
829000000

push @

push 0x80

push 2

push 0

push @

push @xc0000000

push str.malfile.exe

call dword [sym.imp.KERNEL32.d11_CreateFileA]
mov dword [local_10h], eax o
test eax, eax

Jjne 0x4010d2

push str.error_opening_file_for_writing

call sub.api_ms_win_crt_stdio_11_1_0.dl1___acr

kernel32:CreateFileA

Requirements for hooking

A mapping of real address to Binee's Hook for that specific function?
The calling convention used?

How many parameters are passed to the function?

Need to determine the return value if any?

S

type Hook struct {

Name string

Parameters []string

Fn func(*WinEmulator, *Instruction) bool
Return uinte4

Two types of hooks in Binee

Full Hook, where we define the implementation

emu.AddHook ("", "Sleep", &Hook{
Parameters: []string{"dwMilliseconds"},
Fn: func(emu *WinEmulator, in *Instruction) bool {
emu.Ticks += in.Args[9]
return SkipFunctionStdCall(false, 0x0)(emu, in)
¥
)

Partial Hook, where the function itself is emulated within the DLL

emu.AddHook ("", "GetCurrentThreadId", &Hook{Parameters: []string{}})
emu.AddHook("", "GetCurrentProcess", &Hook{Parameters: []string{}})
emu.AddHook ("", "GetCurrentProcessId", &Hook{Parameters: []string{}})

Hook Parameters field defines how many
parameters will be retrieved from emulator and The
name/value pair in output

emu.AddHook ("", "memset", &Hook{Parameters: []string{"dest", "char", "count"}})

Output is the following
[1] ©x21bcO780: P memset(dest = Oxb7fefflc, char = 0x0, count = Ox58)

Example: Entry point execution

./binee -v tests/ConsoleApplicationl x86.exe
[1] 0x0040142d: call ox3f4

[1] ox00401821: mov ecx, dword ptr [0x403000]
[1] ©x0040183b: call oxffffff97

[1] ©x0e4017d2: push ebp

[1] ©x004017d3: mov ebp, esp

[1] ox0e4017d5: sub esp, 0x14

[1] ©x004017d8: and dword ptr [ebp - ©xc], ©
[1] ox004017dc: lea eax, [ebp - ©xc]

[1] oxee4017df: and dword ptr [ebp - 8], ©
[1] ox004017e3: push eax

[1] ©x004017e4: call dword ptr [0x402014]

[1] ©x219690b0: F GetSystemTimeAsFileTime(lpSystemTimeAsFileTime = Oxb7feffe@) = Oxb7feffe0

[1] ox0e4017ea: mov eax, dword ptr [ebp - 8]
[1] ox0e4017ed: xor eax, dword ptr [ebp - Oxc]
[1] ©x004017f0: mov dword ptr [ebp - 4], eax

]

[1] ©x004017f3: call dword ptr [0x402018]

At this point, we have a simple loader that will
handle all mappings of imports to their proper DLL.

We're basically done, right?

Not inside of main yet...

Still have some functions that require user land memory objects that do not
transition to kernel via system calls

We need segment registers to point to the correct memory locations (thanks
@ceagle)

;—— KERNELBASE.dl1_GetCurrentProcesslId:

Ox1011ef30 x [Ya118000000 mov eax, dword fs:[0x18]
0x1011ef36 8b4020 mov eax, dword [eax + 0x20]
0x1011ef39 c3

Userland structures, TIB/PEB/kshareduser

We need a 1B and PEB with some reasonable values
Generally, these are configurable.

Many just need some NOP like value, e.g. NOP function pointer for approximate
malware emulation.

All address resolution and mappings are built
outside of the emulator

type ThreadInformationBlock32 struct {

CurentSEH uint32 //0x00
StackBaseHigh uint32 //0x04
StackLimit uint32 //0x08
SubSystemTib uint32 //0x0c
FiberData uint32 //0x10
ArbitraryDataSlock uint32 //0x14
LinearAddressOfTEB uint32 //0x18
EnvPtr uint32 //0x1c
ProcessId uint32 //0x20
CurrentThreadId uint32 //0x24

PEs are parsed and loaded. Basic structures like the
segment registers and TIB/PEB are mapped with
minimum functionality.

We're defining the entire environment outside of
the emulator...

Almost Everything in Windows needs HANDLEs

What is the minimum we need for a HANDLE type Handle struct {
Path string

in Binee? Access int32
File *os.File
1. An abstraction over subsystem data types L SO
RegKey *RegKey
2. Helper methods for reading/writing/etc... Thread *Thread
to and from subsystems. i

type WinEmulator struct {

Handles map[uint64]*Handle

HANDLEs get allocated directly from the Heap

The Heap plays a central role in Binee

The Heap is what enables and ultimately distributes HANDLEs for all other
emulation layers, including file IO and the registry.

Basically, anything not in the stack after kernel32:*
execution has started goes into Binee's
Heap Manager. V

ntdll:*

Binee MM .

Now we have a decent core, at least with respect to
the user land process. Now it is time to build out the
Mock OS subsystems

Starting with the Mock File System

What are the requirements for
CreateFileA?

Returns a valid HANDLE into EAX

register

6200
6880000000
6202

6200

6300
68000000c0
68c4214000

1500204000

89442410
85c0

7515
68d0214000
829000000

push @

push Ox80

push 2

push @

push @

push 0xc@000000

push str.malfile.exe

call dword [sym.imp.KERNEL32.d1ll_CreateFileA]
mov dword [local_10h], eax

test eax, eax

Jne 0x4010d2

push str.error_opening_file_for_writing

call sub.api_ms_win_crt_stdio_11_1_0.dl1___acr

Creating Files in the Mock File Subsystem

Emulator
Full hook captures HANDLE from)
parameters to CreateFile Alllinegsineelsr |,

If file exists in Mock File System or
permissions are for “write”. Create a
new Handle object and get unique ID
from Heap Manager

CreateFile

Write HANDLE back to EAX HANDLE Lookup Table

Writing Files in the Mock File Subsystem

Full hook captures HANDLE from
parameters to WriteFile

HANDLE is used as key to lookup
actual Handle object outside of
emulator

All writes are written to sandboxed
file system for later analysis.

Malware thinks file was written to
proper location and continues as if
everything is successful

g

HANDLE
Lookup
Table

4—
Full Hook Handler :

.

Temp

Real File
System
(Sandboxed)

Emulator

WriteFile

ox0,

[1] ©x21970b80: F CreateFileA(lpFileName = 'malfile.exe', dwDesiredAccess = 0xc0000000, dwShareMode
0x0)

lpSecurityAttributes = 0x0, dwCreationDisposition = Ox2, dwFlagsAndAttributes = 0x80, hTemplateFile
= 0xa00eve7b6

Oxb7feff10, nNumberOfBytesToWrite = Oxb,
(5)'¢s)

[1] ©x21971000: F WriteFile(hFile = ©xa@0007b6, lpBuffer
1pNumberOfBytesWritten = @xb7feff@c, lpOverlapped = 0x0)

And in the console

> 1ls temp

malfile.exe

> cat temp/malfile.exe
hello world

Now you can see the file contents. Obviously
trivial... more to come....

At this point, the user space is largely mocked.
We also have the ability to hook functions, dump
parameters and modify the call execution.
Additionally, we have some mock HANDLEs.

Can we emulate more?!

Mock Registry Subsystem

Full Hook on Registry functions

Our hook interacts with the Mock Registry
subsystem that lives outside of the
emulation

Mock Registry has helper functions to
automatically convert data to proper types
and copy raw bytes back into emulation
memory

Mock Registry

n
5

!‘

—

Emulator

RegOpenKeyA

Configuration files defines OS environment quickly

e Yaml| definitions to describe as much of the OS context as possible
o Usernames, machine name, time, CodePage, OS version, etc...

e All data gets loaded into the emulated userland memory

root: "os/winle 32/"
code_page identifier: 0x4ed
registry:
HKEY_CURRENT_USER\Software\AutoIt v3\AutoIt\Include: "yep"
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet@@1\Control\Arbiters\InaccessibleRange\Psi: "PhysicalAddress"
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet@0@1\Control\Arbiters\InaccessibleRange\Root: "PhysicalAddress"
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet@01\Control\Arbiters\InaccessibleRange\PhysicalAddress:
"hex(a):48,00,01,00,00,00,00,0
0,00,00,01,00,00,00,00,03,00,01,00,ff,ff,ff,ff,ff,f
f,ff,ff"

[1] 0x2230c420: F RegOpenKeyExA(hKey = 'HKEY_LOCAL_MACHINE', lpSubKey =
'SYSTEM\ControlSet@01\Control\Windows"', ulOptions = 0x0, samDesired = 0x20019, phkResult = Oxb7feff40) =
0x0

[1] ©x2230c3e0: F RegQueryValueExA(key = 0xa000099c, lpValueName
1pType = Oxb7feffd44, lpData = Oxb7feffdc, lpcbData = Oxb7feff48)

'CSDBuildNumber', 1lpReserved = 0x0,
0x0

[1] ©x22337640: F RegSetValueA(hKey = "', 1lpSubKey = 'Testing', dwType = 0x1, lpDate = Oxb7feff80, cbData =
0x0) = Ox57

Configuration files can be used to make subtle
modifications to the mock environment which
allows you to rapidly test malware in diverse
environments

L et's do more...

Mocked Threading

Round robin scheduler approximately simulates a multi-thread environment.

Time slices are configurable but equal for each “thread” of execution. Thread
manager handles all the context switching and saving of registers.

Allows us to hand wave (punt for later) most multithreading issues.

Thread Manager Threads inside the emulator

[1] ©x20ae3f80: F CreateThread(lpThreadAttributes = 0x0, dwStackSize = 0x0, lpStartAddress = 0x401040,
lpParameter = 0xa@1007ee, dwCreationFlags = 0x0, lpThreadId = 0x0) = 0x3

[1]

[2] ©x20dd@710: F _ stdio_common_vfprintf(stream = 0x0, format = 'tid %d, count %d\n', p@ = 0x0, pl = 0x0)
= 0x403378

[31]

[1]

[1] ©x20ae3f80: F CreateThread(lpThreadAttributes = 0x0, dwStackSize = 0x0, lpStartAddress = 0x401040,
lpParameter = 0xa0200826, dwCreationFlags = 0x0, lpThreadId = 0x0) = 0x4

[2]

[3] 0x20dde710: F _ stdio_common_vfprintf(stream = 0x0, format = 'tid %d, count %d\n', po@ = Ox1, pl = 0x0)
= 0x403378

[1]

[1]

[2]

[4]

[1]

[31]

[2] ©x20dde710: F _ stdio_common_vfprintf(stream = 0x0, format = 'tid %d, count %d\n', po@ = 0x0, pl = 0x1)
= 0x403378

Increasing fidelity with proper DIIMain execution

Need to setup stack for DIIMain call, set up proper

values for DLLs loaded by the PE. :
BOOL WINAPI D11Main(

. _In_ HINSTANCE hinstDLL,
Call this for every DLL loaded by the PE. “In_ DWORD FduRencon.

— _In_ LPVOID lpvReserved
But how to do this in the emulator? s

Start emulation at each DIIMain and stop at 77?

ROP Gadgets — an easy shortcut to loading DLLs

A simpler approach is to only start the emulator once when the entire process
space is layed out. However, the start point is no longer the PE entry point.

Instead, entry point is now the start of our ROP chain that calls each loaded
DIIMain in order and ending with the PE's entry point address

N N N

IpvReserved IpvReserved IpvReserved
fdwReason fdwReason fdwReason

hinstDI| hinstDI| hinstDI|

ret ret ret

dll 1 dll 2 dll 3 malware

Demos

e €a6b<sha256> shows unpacking and service starting
e ecc<sha256> shows unpacking and wrote malicious dll to disk, loaded dll
and executed it

We've open-sourced this — What's next

Increase fidelity with high quality hooks

Single step mode, debugger style

Networking stack and implementation, including hooks
Add ELF (*nix) and Mach-O (macOS) support
Anti-Emulation

Thank you and come hack with us

https://github.com/carbonblack/binee

https://github.com/carbonblack/binee

