
API-Induced SSRF
How Apple Pay Scattered
Vulnerabilities Across the Web

About me

● Math degree
● Web developer, ~5 years
● Bounties
● At PKC ~1 year, web dev and code

audits for clients - pkc.io

Intro

https://pkc.io

Overview

● Definitions
● Demo some mistakes

○ Apple Pay
○ Twilio
○ Others

● How not to be like Apple

Intro

Diagram of
Inductive

Weaknesses

Weak Code
(e.g. Heartbleed)

Vulnerable
Deployment

Vulnerable
Deployment

...

Typical Class Breaks
See Schneier’s blog post

https://www.schneier.com/blog/archives/2017/01/class_breaks.html

Diagram of
Inductive

Weaknesses

???

Weak Code Weak Code

Vulnerable
Deployment

Vulnerable
Deployment

...

...

Diagram of
Inductive

Weaknesses

Inductive Weakness

Weak Code Weak Code

Vulnerable
Deployment

Vulnerable
Deployment

...

...

Inductive weakness:
A design flaw that encourages
multiple parties to write
vulnerable code with a similar
exploit pattern across differing
software stacks.

Definitions

Image

SSRF Refresher

Definitions: SSRF

169.254.169.254

Payload with
http://169.254.169.254/foo

Definitions: SSRF

GET /foo

169.254.169.254

Payload with
http://169.254.169.254/foo

Definitions: SSRF

GET /foo

sensitive data

sensitive data

169.254.169.254

Payload with
http://169.254.169.254/foo

Definitions: SSRF

If you can relay requests through a GCP or
AWS box...

Easy things to do with SSRF

● AWS, GCP have a gooey center
○ People have already criticized

AWS/GCP for this
● file:/// urls
● Reflected XSS

○ Technically not SSRF

Definitions: SSRF

https://www.daemonology.net/blog/2016-10-09-EC2s-most-dangerous-feature.html

SSRF: Hard mode

● Cross-protocol stuff
○ SMTP through gopher:// URLs
○ HTTP->memcached->RCE

■ See A New Era of SSRF
○ ???

Definitions: SSRF

https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf

Apple Pay Web
Inductive SSRF

Apple Pay: 3 forms Apple Pay

In-store In-app Web

these are unaffected

Apple Pay

In-store In-app Web

criticising this

The intended flow

● Safari generates a validationURL
(https://apple-pay-gateway-*.apple.com)

Apple Pay

The intended flow

● Safari generates a validationURL
(https://apple-pay-gateway-*.apple.com)

● Your JS sends validationURL to your
backend

Apple Pay

The intended flow

● Safari generates a validationURL
(https://apple-pay-gateway-*.apple.com)

● Your JS sends validationURL to your
backend

● Your backend grabs a session from
validationURL and forwards it to the
client

Apple Pay

Apple Pay

session

session

apple-pay-gateway.apple.com

validationURL
https://apple-pay-gateway.apple.com
/paymentservices/paymentSession

merchant

Apple Pay

GET /foo

sensitive data

sensitive data

169.254.169.254

validationURL
https://169.254.169.254/foo

Demos

appr-wrapper

● Under GoogleChromeLabs on github
● Written, deployed by an @google.com

account
● A sort of polyfill between Apple Pay and

the PaymentRequest API
● A test deployment, so low severity target

Apple Pay

webkit.org

● Maintained by Apple
● Another demo, but on a

higher-severity target

Apple Pay

Apple Pay

Diagram of Apple Pay, like the
SSRF one

Apple’s response

Just
added

this

Disclosure timeline

● Feb 11, Initial email to Apple
● March 26, Apple updated docs
● May 14, Apple concluded investigation. I

replied with follow-up questions.
● … Then Apple ghosted for 2 months :(

Apple Pay

Apple Pay

Diagram of Apple Pay, like the
SSRF one

One mitigation...

Apple Pay

Diagram of Apple Pay, like the
SSRF one

General mitigations

Apple Pay
● Check validationURL against Apple’s list
● Stripe and Braintree handle this flow, so

you’re safe if you use them

Apple Pay

Diagram of Apple Pay, like the
SSRF one

General mitigations

SSRF in general
● Whitelist egress traffic
● Protect your metadata like Netflix:

Detecting Credential Compromise in AWS
● Be mindful of local, unauthenticated stuff

on servers

https://i.blackhat.com/us-18/Wed-August-8/us-18-Bengtson-Detecting-Credential-Compromise-In-AWS.pdf

Apple Pay

Diagram of Apple Pay, like the
SSRF one

Ineffective mitigations

Do not:
● Use a regex to validate the domain

○ Sometimes people try a regex like
https?://.*.apple.com/.*

○ But that matches:
http://localhost/?.apple.com/...

● Rely on HTTPS to prevent cross-protocol
attacks
○ See slide 16 of A New Era of SSRF

https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf

Webhooks

Previous webhook exploits
Webhooks

Payload would go here
● http://169.254.169.254
● gopher://localhost:11211/...

Diagram of
Inductive

Weaknesses

Webhook sender

Listener Listener ...

Most attack this

I’m after these

How Twilio Authenticates Webhooks
Webhooks

● HMAC and hope the listener checks it
● Lots of webhooks do this, Twilio’s not

unique

The problem
Webhooks

● Who failed to check the HMAC?
○ 23 out of 31 open-source projects

The problem
Webhooks

● Who failed to check the HMAC?
○ 23 out of 31 open-source projects
○ Most of Twilio’s example code

The problem
Webhooks

● Who failed to check the HMAC?
○ 23 out of 31 open-source projects
○ Most of Twilio’s example code

● Contributing factors
○ Bad documentation
○ The easiest receiver implementation is a

vulnerability

Demo: Webhooks

Twilio Example Code

● Examples themselves not
deployed publicly

● But, did find vulns where it
was copied/pasted

Apple Pay

Disclosure timeline

● Feb 17, Initial email to Twilio
● March 6, Twilio updated some of the docs

● Rejected all architectural changes due
to “unforeseen issues”

Webhooks

WebhooksWhat about nexmo?

Source

https://developer.nexmo.com/concepts/guides/signing-messages#validate-the-signature-on-incoming-messages

WebhooksWhat about nexmo?

Source

https://developer.nexmo.com/concepts/guides/signing-messages#validate-the-signature-on-incoming-messages

Webhooks

{

 "object_kind": "push",

 "commits": [{

 "message": "Initial commit of foo project",

 "url": "https://...",

 ...

 }],

 "repository": {

 "url": "git@your.git.url/something.git", ...

 }, ...

}

Gitlab webhooks: the happy path

Webhooks

What did I do?

● Found a server that was receiving gitlab
webhooks
○ On the open internet
○ Was the trigger of build pipelines for multiple

tenants...

Webhooks

{

 "object_kind": "push",

 "commits": [{

 "message": "Initial commit of foo project",

 "url": "https://...",

 ...

 }],

 "repository": {

 "url": "git@your.git.url/something.git", ...

 }, ...

}

Gitlab webhooks: what I did

Put the tenant’s gitlab url here

Webhooks

{

 "object_kind": "push",

 "commits": [{

 "message": "Click here to do something! :D",

 "url": "javascript:alert('XSS on: ' + window.origin);",

 ...

 }],

 "repository": {

 "url": "git@your.git.url/something.git", ...

 }, ...

}

Gitlab webhooks: what I did

Webhooks

What are some better ways to send webhooks?

● For crypto nerds: authenticated cipher
○ E.g. AES-GCM
○ Still symmetrical like an HMAC
○ Forces webhook consumers to decrypt, so

they’ll accidentally verify the GCM tag you
send them

Webhooks

What are some better ways to send webhooks?

● More practical: only send high-entropy,
cryptographically random event IDs
○ Webhook consumer has to fetch

/items/?id=<id> with their API token
○ Plaid does roughly this

Webhooks

What are some better ways to send webhooks?

● For existing webhooks: test & warn
○ During registration, do 2 test requests:

■ 1 valid MAC
■ 1 invalid MAC

○ Warn if they get the same response code

What else?

Salesforce Objects vs Dynamodb

Both:
● NoSQL-like object storage
● REST APIs with custom SQL-like

queries

/?q=SELECT+id+from+Foo+WHERE+name+LIKE+'...'

Salesforce SOQL

Inject here

Salesforce SOQL

Source

https://trailhead.salesforce.com/content/learn/modules/secdev_injection_vulnerabilities/secdev_inject_prevent_soql_injection

POST / HTTP/1.1
{
 "TableName": "ProductCatalog",
 "KeyConditionExpression": "Price <= :p",
 "ExpressionAttributeValues": {
 ":p": {"N": "500"},
 },
}

Dynamodb: Better

Enforced Parametrization

Closing Thoughts

From Apple after two months of silence

“Developers are responsible for implementing
whatever security and networking best
practices make the most sense for their
environment.”

Apple Pay

“If you’ve built a chaos
factory, you can’t dodge
responsibility for the
chaos.”

Tim Cook, Apple CEO

Closing Thoughts

Source

https://www.theguardian.com/commentisfree/2019/jun/19/tim-cook-if-youve-built-a-chaos-factory-you-cant-dodge-responsibility-for-the-chaos

Financial

● Low-hanging bounty fruit
● Embarrassment
● High-interest tech debt

Closing Thoughts

Designing defensive APIs

● Audit your example code
● Be careful about passing around URLs
● If “Do this or you’re vulnerable!” is in your

documentation, try to make the warning
unnecessary

Closing Thoughts

Acknowledgments

● Jonathan Ming at PKC - asked the initial
questions about Apple Pay

● Arte Ebrahimi at PKC - pointed me to the Nexmo
stuff

● Ken Kantzer at PKC - helped with the
presentation

● Andrew Crocker at EFF - legal assistance

Closing Thoughts

Thank you!

www.pkc.io

