BAD'DRIVERS
e{t" 5 ¢
€ o, ~

GET OFF THE KERNEL
IF YOU CAN’T DRIVE

WHO ARE WE

Jesse Mickey
Michael Shkatov

@JesseMichael h @HackingThings
cclypsium
N

P4

AGENDA

Beginning

Conclusions
Q&A

PRIOR WORK

Diego Juarez

* https://www.secureauth.com/labs/advisories/asus-drivers-elevation-privilege-vulnerabilities

* https://www.secureauth.com/labs/advisories/gigabyte-drivers-elevation-privilege-vulnerabilities

* https://www.secureauth.com/labs/advisories/asrock-drivers-elevation-privilege-vulnerabilities

@ReWolf

* https://github.com/rwfpl/rewolf-msi-exploit + Blog post link in Readme

@NOPANdRoll (Ryan Warns) / Timothy Harrison

* https://downloads.immunityinc.com/infiltrate2019-slidepacks/ryan-warns-timothy-harrison-device-
driver-debauchery-msr-madness/MSR_Madness_v2.9 INFILTRATE.pptx

@SpecialHoang

* https://medium.com/@fsx30/weaponizing-vulnerable-driver-for-privilege-escalation-gigabyte-edition-
e73ee523598b

BACKGROUND

‘ Application -“‘ "&“ e U
~ e User sp
9ce

gb Windows

5. 0S

Driver

Device

BACKGROUND

Application

DeviceloControl(dey, ioctl, inbuf, insize, ...)

1S3N03Y

IOCTL handler in driver called with IRP struct
e contains args passed from userspace

1S3N03Y

JIDOVIN

Ny
RNy
2.3. Windows drivers
2.3.1. Sighed

2.3.2. WHQL signed
2.3.3. EV signing cert (A Must for Win10 signing process)

pA4

- - -
b .
A > r - e

 LOADS ITANYWAY

P A4

imgflip..

HOW IT’S MADE

Briefly explain the process of signing code

KNOWN THREATS

RWEverything

LoJax

Slingshot

Game Cheats and Anti-Cheats (CapCom and others)
MSI+ASUS+GIGABYTE+ASROCK

Whoami: secret\user

Found wininit.exe PID: ©00002D8

Looking for wininit.exe EPROCESS...

EPROCESS: wininit.exe, token: FFFF8A06105A006B, PID: 2DS8
Stealing token...

Stolen token: FFFF3ABH6105A006B

Looking for MsiExploit.exe EPROCESS...

EPROCESS: MsiExploit.exe, token: FFFF8AB642E3B957, PID: CAAS8
Reusing token...

Whoami: nt authority\system

Read & Write Everything

Jtility to access almost a
Jser-space app + signed

| hardware interfaces via software
RwDrv.sys driver

Driver acts as a privilegec

proxy to hardware interfaces

Allows arbitrary access to privileged resources not intended

to be available to user-sp

dCe

CHIPSEC helper to use RwDrv.sys when available

LoJax

First UEFI malware found in the wild

mplant tool includes RwDrv.sys driver from RWEverything
L oads driver to gain direct access to SPI controller in PCH
Uses direct SPI controller access to rewrite UEFI firmware

Slingshot

APT campaign brought along its own malicious driver

Active from 2012 through at least 2018

Exploited other drivers with read/write MSR to bypass Driver
Signing Enforcement to install kernel rootkit

Motivations

1. Privilege escalation from Userspace to Kernelspace
2. Bypass/disable Windows security mechanisms
3. Direct hardware access

* (Can potentially rewrite firmware

Attack Scenarios

1. Driver is already on system and loaded
 Access to driver is controlled by policy configured by driver itself
* Many drivers allow access by non-admin

2. Driver is already on system and not loaded
* Need admin privs to load driver
 Can also wait until admin process loads driver to avoid needing admin privs

3. Malware brings driver along with it
* Need admin privs to load driver
e Can bring older version of driver
 Lojax did this for in-the-wild campaign

il g B9 =

Finding drivers

Signed drivers

Focused on drivers from firmware/hardware vendors
Size (< 100KB)

rdmsr/wrmsr, mov crN, in/out opcodes are big hints
Windows Driver Model vs Windows Driver Framework

Finding drivers

Windows Driver Model

RtlInitUnicodeString{&DestinationString, L"\\Device\\AsrDru161");
RtlInitUnicodeString{&SymbolicLinkName, L"\\DosDevices\\AsrDru161");
result = IoCreateDevice{u1, Ox4Bu, &DestinationString, 0x22u, 0, 0, &u8);
if (result >= 0)

{

v3 = IoCreateSymbolicLink{&SymbolicLinkName, &DestinationString});

if (3 >=108)

{
vi->MajorFunction[IRP_MJ CREATE] = (PDRIVER DISPATCH)&sub_11008;
vi->MajorFunction[IRP_MJ_CLOSE] = {(PDRIVER_DISPATCH)&sub_11008;
vi1->MajorFunction[IRP_MJ_DEVICE_CONTROL] = (PDRIVER_DISPATCH)ioctl_handler;
vi->DriverUnload = (PDRIVER UNLOAD)sub 11838;

Windows Driver Framework

result = WdfVUersionBind(DriverObject, &RegistryPath, &WdfUersion, &WdfDriverGlobals);

WdfVersion ; DATA XREF: sub_14000168008+4To
; sub_14800810088+17T0 ...

offset aKmdflibrary ; “KmdfLibrary”

1 ; WdfMajorVUersion

9 ; WdfHMinorVersion

1DBBh ; WdfBuildNumber

18Ch ; NumWdfFunctions

offset WdfFunctions ; Pointer to array of Functions to be filled by UWDF Library

Finding drivers

loCreateDevice vs. WdmlibloCreateDeviceSecure

Security Descriptor Definition Language (SDDL)
 Used to specify security policy for driver

Example:
* D:P(A;;GA;;;SY)(A;;GA;;;BA)

DACL that allows:
* GENERIC_ALL to Local System
e GENERIC_ALL to Built-in Administrators

Finding drivers

* Spent 2 weeks looking for drivers
* We skimmed though hundreds of files

e At least 42 vulnerable signed x64 drivers
* Found others since "\ (/) /~

NOW WHAT

What can we do from user space with a bad driver?
* Physical memory access

c MMIO

* MSR Read & Write

* Control register access

* PCI device access

e SMBUS

* And more...

Arbitrary Ring0 memcpy

inbuf = {inbuf_memcpy struct =)a2->AssociatedIrp.SystemBuffer;

* Can be used to patch ;2->ToStatus . Infornation - Gioh;
kernel code and data R
structures ro - inbufoseres
. Steal tokenS’ elevate glzgl(’t‘%f;l(l"'[;ggigz"j:,?rc=%x,size=%d", inbuf->dest, inbuf->src, (unsigned int)size);
privileges, etc oigey o
* PatchGuard can catch - oesten el
some modifications, o
but not all lihile (v7);

b
result = 0i64;

Arbitrary Physical Memory Write

* Another mechanism to
patCh kernel Code and data giﬁsiggiﬂg;p:di’iggggI2323;:23?:;33‘29L_RDDRESS)ioctl_inbuF—)phys_addr, ioctl inbuf->size, 8);

if { mapped_addr)

{
StrUCtureS src_ptr = (char =*)ioctl inbuf->virt_addr;
bytes left = ioctl inbuf->size;
® Steal tOkenS EIevate dst_ptr = {char x)mapped_addr; // physical address remapped into virtual address space
’ while (bytes left)
o . {
pr|V||egesl etc %tem_;ize =.ioctl_inbuF—)item_size; /7 copy Dg dwords, words, or bytes
if (item size) // 1tem_size = B8 means copy byte-by-byte
{
* PatchGuard can catch iten size_sub_1 = iten size - 1;
. . if { item_size_sub_1) // item_size = 1 means copy word-by-word
{
Some mOdIflcatlonSI if { item size sub 1 == 1) // item_size = 2 means copy dword-by-dword
{
but not a” dword val = =(_DWORD *)src_ptr;

src_ptr += 4

*(DWORD =)dst_ptr = dword_val;
dst_ptr += 4
bytes_left -= 4;

e Can also be used to
perform MMIO access to
PCle and other devices

Lookup Physical Address from Virtual Address

lsigned __inté4 _ fastcall ioctl_get phys_ from virt{_ inté4 a1, _IRP x*a2)

_QUWORD *u2; // vbp@1

e Useful when dealing with IOCTLs that |
provide Read/Write using physical incen virt_sodrs /7 raic

__inté64 phys_addr; // raxi@i
unsigned int vé; /7 ebx@1

addresses signed __inté4 result; // rax@2

u2 = aZ?->AssociatedIrp.SystemBuffer;
a2->IoStatus.Information = 0i64;
vu3 = a2;
virt addr = %u2;
DbgPrint('Default UA=%x", *u2);
LODWORD(phys_addr) = MmGetPhysicalAddress{virt_addr);
v6 = phys_addr;
DbgPrint('Physical Address=%x,dwLins=%x", phys_addr, virt_addr);
if (vo)
{ 3
DbgPrint("'Physical Address=%x", v6);
*{ DUWORD *)u2 = uh;
v3->IoStatus.Information = 4i64;
result = 0i64;
}
else
{
result = STATUS_INVALID_PARAMETER;
¥

return result;

Arbitrary MSR Read

if (ioctl num == Bx9C402084)

Model Specific Registers ¢
.. " . " vl = readmsr_urapper(
* Originally used for "experimental" features not irp->AssociatedIrp.SystenBuffer,
. }rsp—>Parapeters.Deu1celoControl.InputBuFFerLength,
guaranteed to be present in future processors Ir5p-Parameters beviseloCentrvl. OutputBufferLength,
* Some MSRs have now been classified as architectural iostatus info_pte)s

goto LABEL_59;

and will be supported by all future processors }
 MSRs can be per-package, per-core, or per-thread
* Access to these registers are via rdmsr and wrmsr

OpCOdeS inté4 _ fastcall readmsr_wrapper{inbuf_msr_struct xinbuf, _ inté4 inbuf _size, QU
y Only acceSSIble by Rlngo unsigned __inté4 msr_value; // rax@1

msr value = _ readmsyr{inbuf->msr_addr);

®*outbuf = ((unsigned _ int64)HIDWORD(msr value) << 32) | (unsigned int)msr_value;
*putbuf_size = 8;
return B8i64;

Arbitrary MSR Write

if (ioctl num == Bx9C402088)

Security-critical architectural MSRs

° STAR (OXC0000081) e wri:;nggz:ggi:gIrp.SystemBuFFer
e SYSCALL EIP address and Ring 0 and Ring 3 Segment base irsp;;ParalpeEe:?-Degicilogogzrol-InputBuFFerLength,
1rp—-2HASsoclatedlrp. stembutrter,
e LSTAR (OXCOOOOOSZ) irgp—>Parameters.geusi’ceIOCOntrol.OutputBuFFerLength,
* The kernel's RIP for SYSCALL entry for 64 bit software Lostatus_info_ptr);

goto LABEL_59;

* CSTAR (0xC0000083) y
* The kernel's RIP for SYSCALL entry in compatibility mode

inté4 _ fastcall writemsr_wrapper{inbuf_msr_struct =inbuf, _ inté4 inbuf_size, void =outbuf,

unsigned __ inté4 v5; /7 rdx@1

. 0 BrLg 3 3 v5 = (unsigned __ inté4)inbuf->msr_value >> 32;
EntrypOIntS used In transition from ng3 to ngo __writemsr(inbuf->msr_addr, LODWORD(inbuf->msr_value), HIDWORD(inbuf->msr_value));

*iostatus_info_ptr = 8;

return 0i64;

Arbitrary Control Register Read

CRO contains key processor control bits:
 PE: Protected Mode Enable

* WP: Write Protect

 PG: Paging Enable

CR3 = Base of page table structures

CR4 contains additional security-relevant control bits:
 UMIP: User-Mode Instruction Prevention

 VMXE: Virtual Machine Extensions Enable

e SMEP: Supervisor Mode Execution Protection Enable
 SMAP: Supervisor Mode Access Protection Enable

if (ioctl _inbuf->which_cvr)

switch { ioctl inbuf->which_cr)
{
case 2:
cr_value = _ readcr2();
break;
case 3:
cr_value = _ readcr3();
break;
case 4:
cr_value = _ readcri();
break;
default:
if { ioctl _inbuf->which_cr *= 8)

a2->IoStatus.Information = 0i64;
az->IoStatus.Status = STATUS_UNSUCCESSFUL;
goto LABEL_135;

i

cr_value = _ readcr8();

b
b

else

{
b

ioctl inbuf->cr_value = cr_valuej

cr_value = _ readcrB();

Arbitrary Control Register Write

CRO contains key processor control bits:
 PE: Protected Mode Enable

* WP: Write Protect

 PG: Paging Enable

CR3 = Base of page table structures

CR4 contains additional security-relevant control bits:
 UMIP: User-Mode Instruction Prevention

 VMXE: Virtual Machine Extensions Enable

e SMEP: Supervisor Mode Execution Protection Enable
e SMAP: Supervisor Mode Access Protection Enable

if { ioctl _inbuf->which_cr)

{

switch { ioctl inbuf->which_cr)
{
case 3:
__writecr3{ioctl inbuf->cr_value);
break;
case 4:
__writecr4{ioctl inbuf->cr_value);

break;

case 8:
__writecr8{ioctl inbuf->cr_value);
break;

default:
aZ2->JoStatus.Status = STATUS_UNSUCCESSFUL;
break;

b
b

else

{
__writecr®(ioctl inbuf->cr_value);

b

Arbitrary 10 Port Write

e How dangerous this is depends on what's in the system %F (ioctl num == BxX9C4BABCS || ioctl num == Bx9C4BABDS || ioctl nun

e Servers may have ASPEED BMC W|th Pantdown ioctl_inbuf = {inbuf_out_struct =)irp->AssociatedIrp.SystemBuffer;
N _ : .) port_num = ioctl _inbuf->port_num;
vulnerability which provides read/write into BMC ¢F (foctionun == Ox9CHOADS)
i __outbyte(port num, ioctl inbuf->port_ualue);
address space via 10 port access Sito LABEL d53
- }
* Laptops likely have embedded {F ¢ 1octl num == Sxockeasse)
- ¢
controller (EC) reachable via IO port access _ utwordiport numy Sock) SnbuE-3part value);
goto LABEL_65;
}
* Can potentially be used to perform legacy PCl access by gF G roctinun == Gx3CROAGED)
accessing pOI"tS OXCFS/OXCFC __outdword(port_num, ioctl inbuf->port_value);

goto LABEL_65;
3

Arbitrary Legacy PCl Write

 How dangerous this is depends on what's in the
system
* [ssues with overlapping PCl device BAR over
memory regions
* Overlapping PCI device over TPM region
* Memory hole attack

_disable();
__outdword(

0xCF8u,

(unsigned int8){ioctl inbuf->offset & OxFC)
+ ({ioctl inbuf->func

+ 8

* (ioctl_inbuf->dev + 32
* (ioctl inbuf->bus + ({{{{unsigned int)ioctl inbuf->offset >> 8) & BxF) + 128) << 8)))) <K 8));
__outdword((ioctl _inbuf->offset & 3) + BxCFC, ioctl inbuf->write_value);

CAN I DO IT TOO?

 Can we get our own code signing cert?
* Process and cost.
e Legality

Putting it all together

High-level steps to escalate from Ring3 to Ring0 via MSR access

e Allocate buffer for Ring0 payload

* Read LSTAR MSR to find address of kernel syscall handler

* Generate payload that immediately restores LSTAR MSR and performs malicious
Ring0 actions

* Write address of payload to LSTAR MSR

* Payload immediately executes in Ring0 on next syscall entry

It's a little more complicated than that...

Supervisor Mode Execution Prevention (SMEP)

* Feature added to CPU to prevent kernel from executing code from user pages

e Attempting to execute code in user pages when in Ring0 causes page fault
* Controlled by bit in CR4 register

Need to read CR4, clear CR4.SMEP bit, write back to CR4
* This can be done via Read/Write CR4 IOCTL primitive or via ROP in payload

It's a little more complicated than that...

e Payload starts executing in Ring0, but hasn't switched to kernelspace yet
* Need to execute swapgs as first instruction
* Also need to execute swapgs before returning from kernel payload

* Kernel Page Table Isolation (KPTI)
* New protection to help mitigate Meltdown CPU vulnerability
e Separate page tables for userspace and kernelspace
* Need to find kernel page table base and write that to CR3
 We can use CR3 read IOCTL to leak Kernel CR3 value when building payload

IS THERE HOPE? @
* AV industry

* What good is an AV when you can bypass it, and how can
the AV help stop this lunacy.

* Microsoft
* Virtualization-based Security (VBS)
* Hypervisor-enforced Code Integrity (HVCI)
* Device Guard
e Black List

Automating Detection

* Manually searching drivers can be tedious

 Can we automate the process?

 Symbolic execution with angr framework
e Gotinitial script working in about a day
 Works really well in some cases
 Combinatorial state explosion in others

import angr
import claripy

irp addr = 0x3000000
ioctl inbuf addr = 0x4000000

ioctl handler addr = 0x110d8
rmsr addr = 0Oxll4ac

angr Project ("WinRing0x64.sys", auto load libs=False)
= p.factory.call state(addr—loctl handler _addr)

Automating Detection

 Testing out the idea...

e Create symbolic regions for parts of IRP
e Store those into symbolic memory

 And set appropriate pointers in execution state

irp buf = claripy.BVS('irp', 8%*0xd0) .reversed

state.memory.store (irp addr, 1irp buf)

ioctl inbuf = claripy.BVS('ioctl inbuf', 1024).reversed

state.memory.store(ioctl_inbuf_aadr, ioctl inbuf)

state.regs.rdx = irp addr
state.mem[state.regs.rdx+0x18] .uinté4 t = 1octl inbuf addr

Automating Detection

 Testing out the idea...
* Create simulation manager based on state
 Explore states trying to reach the address of WRMSR opcode

* If found, show where the WRMSR arguments came from

sm = p.factory.simulation manager (state)
sm.explore (find=wrmsr addr)

if sm.found:
f = sm.found|[0]

"RIP: %x" % f.solver.eval(f.regs.rip))
"MSR ADDR: symbolic=%s, value=%s" % (f.regs.ecx.symbolic, f.regs.ecx))
= value=%s" % (f.regs.edx.symbolic, f.regs.edx))

(
(

print ("MSR High DWORD: symbolic=%s, e
("MSR Low DWORD: symbolic=%s, value=%s" % (f.regs.eax.symbolic, f.regs.eax))

(angr) jessefdemo:~$ time python3 wormhole.py

[... snipped many angr warnings ...]

RIP: 1ll4ac

MSR ADDR: symbolic=True, value=<BV32 ioctl inbuf 2 1024[31:0]>

MSR High DWORD: symbolic=True, value=<BV32 “ioctl 1nbuf 2 1024[95:04]>
MSR Low DWORD: symbolic=True, value=<BV32 ioctl 1nbuf 2 1024[63:32]>

real Om4.450s

ser Om3.928s

SySs Om0.523s
(angr) jessel@demo:~$

def mem write hook(state):
ioctl handler addr = state.solver.eval (state.inspect.mem write expr)

state = p.factory.entry state()
drv_obj buf = claripy.BVS('driver object', 8*0x150) .reversed

state.memory.store (drv obj addr, drv obj buf)
state.regs.rcx = drv obj addr

state.inspect.b('mem write', mem write address=drv obj addr+0xe(0, when=angr.BP AFTER, action=mem write hook)

sm = p.factory.simulation manager (state)
sm.explore (n=500)

Automating Detection

* Problems...

 Current code only supports WDM drivers

* Have some ideas how to support WDF drivers

 Angr uses VEX intermediate representation lifting
e VEX s part of Valgrind
 Has apparently never been used to analyze privileged code
 Decode error on rdmsr/wrmsr, read/write CR, read/write DR opcodes

e Some drivers cause it blow up and use 64GB of ram

DISCLOSURES
| SEE BAD DRIVERS..

SUPERMICR!

DISCLOSURES

Ask Mlcrosoft what’s their policy regarding bad drivers
Not a security issue, open a regular ticket
This might be an issue, are you sure?
Meh, Not an issue
Are you REALLY, REALLY, sure?
Ok, let us check

Ok, We will do something about it

P A4

THANK YOU!

DISCLOSURES

 Sent disclosure Friday 5pm
 Response came back Saturday morning
* Fix ready to start deployment in 6 weeks

DISCLOSURES

NNSReck

All the primitives in one driver .- .
* Physical and virtual memory read/write
 Read/Write MSR

e Read/Write CR

* Legacy Read/Write PCl via IN/OUT

* IN/OUT //

FINALLY WLE,SQESO\METHING

N e SR | S Ve U
ay T r \ ‘
- A e e
IRVETT, o e e st e,
1 e .
e A\ b i v e ‘. F
%Li A, A et ? 3

ADVISORIES

Vendor Date Advisory
Intel July 9, 2019

Huawei July 10, 2019
cmanager-en

Phoenix TBD TBD
REDACTED Aug 13,2019 TBD
REDACTED TBD TBD

https://www.huawei.com/fr/psirt/security-advisories/huawei-sa-20190710-01-pcmanager-en

NO RESPONSE

SUPERMICR

Microsoft Statement

Conclusions

THERE'S A LOTTA BAD
- ,-. \ J‘ —_— - 4
—y V’M—d‘ th_

DRIVERS OUT THERE

* Bad drivers can be immensely dangerous
* Risk remains when old drivers can still be loaded by Windows
 We want to kill off this entire bug class

Code release

e GitHub release of all of our code

https://github.com/eclypsium/Screwed-Drivers

