
The Token Menace
SSO Wars

This Photo by Unknown Author is licensed under CC BY

https://www.flickr.com/photos/tokencompany/8073379110
https://creativecommons.org/licenses/by/3.0/

> whoarewe

▪ Alvaro Muñoz

Security Researcher with Micro Focus Fortify team

@Pwntester

▪ Oleksandr Mirosh

Security Researcher with Micro Focus Fortify team

@OlekMirosh

Agenda
• Introduction

• Authentication Tokens

• Delegated Authentication
• Arbitrary Constructor Invocation

• Potential attack vectors

• Dupe Key Confusion

• Windows Communication Foundation (WCF)

• Windows Identity Foundation (WIF)

• Conclusions

Introduction
This Photo by Unknown Author is licensed under CC BY

https://www.flickr.com/photos/tokencompany/8073379110
https://creativecommons.org/licenses/by/3.0/

Delegated Authentication
Service Provider Identity ProviderUser Agent

1

6

Access protected resource

Redirect to SSO service

Forward Auth token

Redirect to resource

Access resource

Resource

Login into SSO service

Respond with Auth token

2 3

45

7

8

Delegated Authentication
Service Provider Identity ProviderUser Agent

1

6

Access protected resource

Redirect to SSO service

Forward Auth token

Redirect to resource

Access resource

Resource

Login into SSO service

Respond with Auth token

2 3

45

7

8

Issuer
Audience
Expire Date
Claims
Signature

Delegated Authentication
Service Provider Identity ProviderUser Agent

1

6

Access protected resource

Redirect to SSO service

Forward Auth token

Redirect to resource

Access resource

Resource

Login into SSO service

Respond with Auth token

2 3

45

7

8

Issuer
Audience
Expire Date
Claims
Signature

Potential attack vectors

Token parsing vulnerabilities

Normally before signature verification

Attack Token parsing process

Eg: CVE-2019-1083

Signature verification bypasses

The holy grail

Enable us to tamper claims in the token

Eg: CVE-2019-1006

Arbitrary Constructor
Invocation

CVE-2019-1083
This Photo by Unknown Author is licensed under CC BY

https://www.flickr.com/photos/tokencompany/8073379110
https://creativecommons.org/licenses/by/3.0/

JWT token

Source: http://jwt.io

System.IdentityModel.Tokens.Jwt library

// System.IdentityModel.Tokens.X509AsymmetricSecurityKey
public override HashAlgorithm GetHashAlgorithmForSignature(string algorithm) {
 ...
 object algorithmFromConfig = CryptoHelper.GetAlgorithmFromConfig(algorithm);
 ...
}

// System.IdentityModel.CryptoHelper
internal static object GetAlgorithmFromConfig(string algorithm) {
 ...
 obj = CryptoConfig.CreateFromName(algorithm);
 ...
}

// System.Security.Cryptography.CryptoConfig
public static object CreateFromName(string name, params object[] args) {
 ...
 if (type == null) {
 type = Type.GetType(name, false, false);
 if (type != null && !type.IsVisible) type = null;
 }
 ...
 RuntimeType runtimeType = type as RuntimeType;
 ...
 MethodBase[] array = runtimeType.GetConstructors(BindingFlags.Instance | BindingFlags.Public |
BindingFlags.CreateInstance);
 ...
 object obj;
 RuntimeConstructorInfo runtimeConstructorInfo = Type.DefaultBinder.BindToMethod(BindingFlags.Instance |
BindingFlags.Public | BindingFlags.CreateInstance, array, ref args, null, null, null, out obj)
 ...
 object result = runtimeConstructorInfo.Invoke(BindingFlags.Instance | BindingFlags.Public |
BindingFlags.CreateInstance, Type.DefaultBinder, args, null);

Similar code for SAML

// System.IdentityModel.SignedXml
public void StartSignatureVerification(SecurityKey verificationKey) {

string signatureMethod = this.Signature.SignedInfo.SignatureMethod;
...

 using (HashAlgorithm hash = asymmetricKey.GetHashAlgorithmForSignature(signatureMethod))
 ...

<saml:Assertion ...>
 ...

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 ...
 </ds:SignedInfo>
 <ds:SignatureValue>WNKeaE3R....SLMRLfIN/zI=</ds:SignatureValue>
 ...
 </ds:Signature>
</saml:Assertion>

• YAY! We can call public parameterless constructor

• Doesn’t sound too exciting or does it?

• We actually control some data:

• The name of the type to be resolved

• Request’s parameters, cookies, headers, etc.

• In .NET the request is accessed through a static property. E.g.:

// System.Web.Mobile.CookielessData
public CookielessData() {
 string formsCookieName = FormsAuthentication.FormsCookieName;
 string text = HttpContext.Current.Request.QueryString[formsCookieName];
 ...
 {

 FormsAuthenticationTicket tOld = FormsAuthentication.Decrypt(text);

Potential Attack Vectors (1/2)

• Information Leakage

• For example: SharePoint server returns different results when Type resolution

and instantiation was successful or not. These results may enable an attacker to

collect information about available libraries and products on the target server.

• Denial of Service

• We found gadgets that trigger an Unhandled Exception. They enable an

attacker to leave SharePoint server unresponsive for a period of time.

Potential Attack Vectors (2/2)

• Arbitrary Code Execution
• We can search for a gadget that installs an insecure assembly resolver on its

static constructor

• We can then send full-qualified type name (including assembly name) which:
• Not available in the GAC, the system will fall back to resolving it using insecure

assembly resolver

• Insecure assembly resolver will load the assembly and then instantiate the type

• Downside:
• May depend on server configurations, e.g. already enabled AssemblyResolvers
• May require ability to upload malicious dll to the server ☹

// Microsoft.Exchange.Search.Fast.FastManagementClient
static FastManagementClient() {
 ...
 AppDomain.CurrentDomain.AssemblyResolve += new ResolveEventHandler(OnAssemblyResolveEvent);
}

// Microsoft.Exchange.Search.Fast.FastManagementClient
private static Assembly OnAssemblyResolveEvent(object sender, ResolveEventArgs args) {
 string name = args.Name.Split(new char[]{','})[0];
 string path1 = Path.Combine(FastManagementClient.fsisInstallPath, "Installer\\Bin");
 string path2 = Path.Combine(FastManagementClient.fsisInstallPath, "HostController");
 string[] paths = new string[] {path1,path2};
 for (int i = 0; i < paths.Length; i++) {

 string full_path = paths[i] + Path.DirectorySeparatorChar.ToString() + name + ".dll";
 if (File.Exists(full_path)) return Assembly.LoadFrom(full_path);

 ...

First payload: Microsoft.Exchange.Search.Fast.FastManagementClient

Second payload: ..\..\..\..\..\..\..\tmp\malicious

Demo
Exchange RCE

Dupe Key Confusion
CVE-2019-1006

This Photo by Unknown Author is licensed under CC BY

https://www.flickr.com/photos/tokencompany/8073379110
https://creativecommons.org/licenses/by/3.0/

Authentication Tokens - SAML

• The Security Assertion Markup Language, SAML:

• Popular standard used in single sign-on systems

• XML-based format

• Uses XML Signature (aka XMLDSig) standard

• XMLDSig standard (RFC 3275):

• Used to provide payload security in SAML, SOAP, WS-Security, etc.

<Assertion>
 <Subject> … </Subject>

<AttributeStatement>
…

</AttributeStatement>
<Signature>

<SignedInfo>
...

</SignedInfo>
<SignatureValue />
<KeyInfo>

key info elements
</KeyInfo>

</Signature>
</Assertion>

Simplified SAML Token

The data to be integrity-checked

Information how to verify signature

Signature

Key(s) used for signature calculation

Previous vulnerabilities in SAML

SAML Assertion
• XML Signature Wrapping (XSW):

• Discovered in 2012 by Juraj Somorovsky, Andreas Mayer and others
• Many implementations in different languages were affected
• The attacker needs access to a valid token
• The attacker modifies the contents of the token by injecting malicious data

without invalidating the signature

• Attacks with XML comments:

• Discovered in 2018 by Kelby Ludwig

• The attacker needs access to a valid token

• Uses XML comments to modify values without invalidating the signature

SAML Signature Verification in .NET

1. Resolve the signing key
• Obtain key from <KeyInfo /> or create it from embedded data

2. Use key to verify signature

3. Identify the signing party

• Derive SecurityToken from <KeyInfo />

4. Authenticate the signing party
• Verify trust on SecurityToken

SAML Signature Verification in .NET

1. Resolve the signing key
• Obtain key from <KeyInfo /> or create it from embedded data

2. Use key to verify signature

3. Identify the signing party

• Derive SecurityToken from <KeyInfo />

4. Authenticate the signing party
• Verify trust on SecurityToken

• System.IdentityModel.Selectors.SecurityTokenResolver

SecurityTokenResolver

• <KeyInfo/> section is processed twice by different methods!

• Premise:
• If we can get each method to return different keys, we may be able to bypass

validation

<KeyInfo>
 <element/>
 <element/>
</KeyInfo>

A tale of two resolvers

Key Identifier

Clause

Clause

ResolveSecurityKey(kId)

ResolveSecurityToken(kId)

Microsoft terminology

Signature verification

 Authentication of signing party

1. Method A supports a key type that is not supported by Method B

2. Both methods support same key types, but in different order

3. Methods check for different subsets of keys within the <KeyInfo/> section

Possible scenarios for different key resolution

•Used in Web Services
•Eg: Exchange server

Windows Communication Foundation (WCF)

•Used in claim-aware applications
•Eg: MVC application authenticating users with ADFS or Azure Active Directory

Windows Identity Foundation (WIF)

•Uses custom configuration such as a custom resolver or custom certificate store
•Eg: SharePoint

Windows Identity Foundation (WIF) + Custom configuration

Examples of affected frameworks

Windows Communication
Foundation (WCF)

This Photo by Unknown Author is licensed under CC BY

https://www.flickr.com/photos/tokencompany/8073379110
https://creativecommons.org/licenses/by/3.0/

Windows Communication Foundation (WCF)

• Framework for building service-oriented applications (SOA)

• Interaction between WCF endpoint and client is done using SOAP
envelopes (XML documents)

• WCF accepts SAML tokens as Client credentials

• May use Windows Identity Foundation (WIF) or not

• XML Signature also used for proof tokens and other usages

// System.IdentityModel.Tokens.SamlAssertion
SecurityKeyIdentifier keyIdentifier = signedXml.Signature.KeyIdentifier;
this.verificationKey = SamlSerializer.ResolveSecurityKey(keyIdentifier, outOfBandTokenResolver);
if (this.verificationKey == null) throw ...
this.signature = signedXml;
this.signingToken = SamlSerializer.ResolveSecurityToken(keyIdentifier, outOfBandTokenResolver);

Key & Token Resolution

Same <keyInfo/> block is processed twice

// System.IdentityModel.Tokens.SamlSerializer
internal static SecurityKey ResolveSecurityKey(SecurityKeyIdentifier ski, SecurityTokenResolver
tokenResolver)
{
 if (ski == null) throw DiagnosticUtility.ExceptionUtility.ThrowHelperArgumentNull("ski");
 if (tokenResolver != null) {
 for (int i = 0; i < ski.Count; i++) {
 SecurityKey result = null;
 if (tokenResolver.TryResolveSecurityKey(ski[i], out result)) {
 return result;
 }
 }
 }
...

Security Key resolution – Depth First

For each <KeyInfo/> element, try ALL resolvers, until one is successful

// System.ServiceModel.Security.AggregateSecurityHeaderTokenResolver
bool TryResolveSecurityKeyCore(SecurityKeyIdentifierClause keyIdentifierClause, out SecurityKey key) {

...

resolved = this.tokenResolver.TryResolveSecurityKey(keyIdentifierClause, false, out key);
if (!resolved)

 resolved = base.TryResolveSecurityKeyCore(keyIdentifierClause, out key);
if (!resolved)

 resolved = SecurityUtils.TryCreateKeyFromIntrinsicKeyClause(keyIdentifierClause, this, out key);

Security Key resolution – Depth First
Remember, one key at a time!

// System.ServiceModel.Security.AggregateSecurityHeaderTokenResolver
override bool TryResolveTokenCore(SecurityKeyIdentifier keyIdentifier, out SecurityToken token) {
 bool resolved = false;
 token = null;
 resolved = this.tokenResolver.TryResolveToken(keyIdentifier, false, false, out token);
 if (!resolved) resolved = base.TryResolveTokenCore(keyIdentifier, out token);
 if (!resolved) {
 for (int i = 0; i < keyIdentifier.Count; ++i) {
 if (this.TryResolveTokenFromIntrinsicKeyClause(keyIdentifier[i], out token)) {
 resolved = true;
 break;
 }

Token resolution – Breadth First

Remember, ALL keys are passed here!

For each token resolver, try ALL <keyInfo/> elements, until one is successful

<KeyInfo>
 <attacker symmetric Key/>
 <expected key identifier/>
</KeyInfo>

Dupe Key Confusion

ResolveSecurityKey(KeyInfo)

ResolveSecurityToken(KeyInfo)

Symmetric Key

Expected X509 Cert

Signature verification

 Authentication of signing party

1. Modify token at will or create token from scratch
2. Sign SAML assertion with attacker’s symmetric key
3. Include symmetric key as first element in <KeyInfo/>
4. Include original certificate as second element in <KeyInfo/>

Dupe Key Confusion

<ds:KeyInfo>

 <trust:BinarySecret >rV4k60..Oww==</trust:BinarySecret>

 <ds:X509Data>

<ds:X509Certificate>MIIDBTCCAe2gAw….rzCf6zzzWh</ds:X509Certificate>

 </ds:X509Data>

</ds:KeyInfo>

Injected Key

Original Cert

Demo
Exchange Account Takeover

Windows Identity
Foundation (WIF)

This Photo by Unknown Author is licensed under CC BY

https://www.flickr.com/photos/tokencompany/8073379110
https://creativecommons.org/licenses/by/3.0/

WIF in a Nutshell

• WIF 4.5 is a framework for building identity-aware applications.

• Applications can use WIF to process tokens issued from STSs (eg: AD

FS, Azure AD, ACS, etc.) and make identity-based decisions

Security Token
Service

Application

WIF
 Auth
Token

User Identity

Key and Token resolutions

• Key resolution is only attempted with first Key Identifier!

• Security Token resolution is attempted for all Key Identifiers

foreach (SecurityKeyIdentifierClause securityKeyIdentifierClause in keyIdentifier) {
…

}

if (!tokenResolver.TryResolveSecurityKey(_signedXml.Signature.KeyIdentifier[0], out
key)) {

...
}

Key and Token resolutions

• Uses System.IdentityModel.Tokens.IssuerTokenResolver

• Secure resolver: It handles key and security token resolution in the same way

• Falls back to X509CertificateStoreTokenResolver in case of a miss

• ResolveSecurityKey() supports EncryptedKeyIdentifierClause

• ResolveToken() only knows about resolving X509 certificates

Attack limitations

• Symmetric key is decrypted using Private key from certificate stored in

specific storage

• By default this storage is LocalMachine/Trusted People

• Attacker needs to obtain public key of such certificate

• Perhaps used for server SSL?

<KeyInfo>
 <attacker encrypted key/>
 <expected key identifier />
</KeyInfo>

Dupe Key Confusion

ResolveSecurityKey(KeyInfo)

ResolveSecurityToken(KeyInfo)

1. Re-Sign SAML assertion with attacker’s symmetric key
2. Encrypt symmetric key using public key from server certificate
3. Include encrypted symmetric key as first element in <KeyInfo/>
4. Include original certificate as second element in <KeyInfo/>

Symmetric Key

Expected X509 Cert

Signature verification

 Authentication of signing party

X509
Certificate

StorePublic Key Private Key

<ds:KeyInfo>
<xenc:EncryptedKey xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

<xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:X509Data>
<ds:X509Certificate>….</ds:X509Certificate>

</ds:X509Data>
</ds:KeyInfo>
<xenc:CipherData>

<xenc:CipherValue>e++….</xenc:CipherValue>
</xenc:CipherData>

</xenc:EncryptedKey>
<ds:X509Data>

<ds:X509Certificate>MIIDBTCCAe...f6zzzWh</ds:X509Certificate>
</ds:X509Data>

</ds:KeyInfo>

Dupe Key Confusion

Injected Key

Original Cert

http://www.w3.org/2001/04/xmlenc

SharePoint Server (WIF)

This Photo by Unknown Author is licensed under CC BY

https://www.flickr.com/photos/tokencompany/8073379110
https://creativecommons.org/licenses/by/3.0/

SharePoint (WIF + Custom resolver)

• SharePoint uses WIF to process tokens and create user identities

• However, it uses a custom security token resolver:

• Microsoft.SharePoint.IdentityModel.SPIssuerTokenResolver

• Key resolution supports Intrinsic keys (eg: RSA Key, BinarySecret, …)

• Token resolution does not know how to resolve Intrinsic keys

Dupe Key Confusion

ResolveSecurityKey(KeyInfo)

ResolveSecurityToken(KeyInfo)

1. Modify token at will or create token from scratch
2. Sign SAML assertion with attacker’s own private RSA key
3. Include attacker’s RSA public key as first element in <KeyInfo/>
4. Include original certificate as second element in <KeyInfo/>

<KeyInfo>
 <attacker RSA Key/>
 <expected key identifier />
</KeyInfo>

RSA Key

Expected X509 Cert

Signature verification

 Authentication of signing party

Dupe Key Confusion

<ds:KeyInfo>

<ds:KeyValue>

<ds:RSAKeyValue>

<ds:Modulus>irXhaxafoUZ...77kw==</ds:Modulus>

<ds:Exponent>AQAB</ds:Exponent>

</ds:RSAKeyValue>

</ds:KeyValue>

<ds:X509Data>

<ds:X509Certificate>MIIDBTCCAe2...zzWh</ds:X509Certificate>

</ds:X509Data>

</ds:KeyInfo>

Injected Key

Original Cert

SharePoint Authentication Flow
User Agent Sharepoint STSSharepoint

Send IdP Token

Respond with FedAuth cookie

Request Session Token

Respond with Session token

Validate token (SP issuer resolver)

Validate token
(WIF token resolver)

Cache Session
Token

1 2

3 4

5

67

• Issuer: IdP
• Victim UPN

SharePoint Attack Flow
User Agent Sharepoint

Send Malicious Token to
WS

Invalid FedAuth cookie Poison Session Token Cache

Validate token (SP issuer resolver)

Authenticate with attacker account

Send original FedAuth cookie to authenticate as victim

Issued by SharePoint so no STS
exchange is needed

Gets a valid FedAuth cookie

Original FedAuth cookie now
points to poisoned Session

Token

1 2

34

• Issuer: SharePoint
• Victim UPN
• Attacker cache key

Demo
Privilege escalation on SharePoint

Burp Plugin

This Photo by Unknown Author is licensed under CC BY

https://www.flickr.com/photos/tokencompany/8073379110
https://creativecommons.org/licenses/by/3.0/

https://github.com/pwntester/DupeKeyInjector

Conclusions & Takeaways

This Photo by Unknown Author is licensed under CC BY

https://www.flickr.com/photos/tokencompany/8073379110
https://creativecommons.org/licenses/by/3.0/

Conclusions

• Even if protocols are considered secure, the devil is in the

implementations

• Processing same data with inconsistent code may lead to

vulnerabilities

• Here be dragons:
• Research focused on .NET, similar flaws can exist in other languages

• Even in .NET, XML Signature is used in other potentially insecure places

• Patch ASAP :)

Questions?
This Photo by Unknown Author is licensed under CC BY

@Pwntester
@OlekMirosh

https://www.flickr.com/photos/tokencompany/8073379110
https://creativecommons.org/licenses/by/3.0/

