Please inject-me, a x64 code injection

By Alon Weinberg

® August2019 =

Alon Weinberg

I'm a Security researcher!
I've been working at Deep Instinct, Since 2017
And | was in the IDF Cyber Unit for 4.5 years

d=spinstinct

Please inject-me

Intro

= Code injection and its
importance
* |ntroducing Inject-Me

a x64 code injection

Technical background

= ReadProcessMemory
= X64 WIinAPI calling
convention

Inject-Me - Detailed flow

= Abusing
ReadProcessMemory

= Copying data on the target
process

= Finalizing the injection
= |nfinite running thread
= Execution

= Demo

Intro

Please inject-me, a x64 code injection

What is code injection

Code injection is the general term of
introducing (or "injecting") code into a process
and executing it from the process context.

Injecting process target process

Inject code

MessageBox
g ExeCU te COde Message X
code

Hello world

Why is code injection

important?
m m
Malicious use of code injection: Benign use of code injection
= Stealth - Hiding malware presence = Security solutions
= Evasion - Bypassing security = Adding functionality
solutions

= Monitoring, Analysis and Research
= Stealing information from another

process

Introducing inject-me

How it all started

A new code injection for x64
The idea behind Inject-Me
“Injection-less” code injection

Technical background

Please inject-me, a x64 code injection

ReadProcessMemory function

= Reads memory from a process

By running the function remotely in a target
process, and controlling the parameters
passed using SetThreadContext one can
read\inject a shellcode into the target
process.

C++

BOOL ReadProcessMemory(

)5

HANDLE
LPCVOID
LPVOID
SIZE T
SIZE T

hProcess,
lpBaseAddress,
lpBuffer,

nSize,
*1pNumberOfBytesRead

X64 WinAPI calling convention

= |nteger arguments

passed in registers RCX, ReadProcessMemory Stack
RDX, R8, and R9
RCX = | hProcess Return Address=
= Arguments after the
RDX = | |pBaseAddress Ilgnored | 0x00000000
Fourth argument passed
- | lpBuff 0x00000000
on the stack R8 RIS Ignored X
:) RO = | nSize Ilgnored 0x00000000
= Function can be set with
Onstack RGNVl MCENREETe Ilgnored | 0x00000000
Four or less arguments

SetThreadContext

. g [pPNumberOfBytesRead
remotely using
1

Details and flow of the
Injection-less code injection

Setting up Creating an infinite
ReadProcessMemory running thread
| | | |
First problem Executing code

Access violation injection

Setting up ReadProcessMemory
for abuse

Setting up
ReadProcessMemory

= ReadProcessMemory gets 5 arguments

= Only 4 arguments can be passed through
registers

= Fifth parameter can be NULL

= Creating a dummy stack - VirtualAllocEx

Creating an infinite allocates memory in a process and zeroes it
running thread

First problem
Access violation

= Dummy stack will be used later as the stack
when calling ReadProcessMemory

Executing code
Injection

Setting up ReadProcessMemory
for abuse

Setting up
ReadProcessMemory

= Using DuplicateHandle to duplicate injecting

First problem process handle to the target process

Access violation = Setting hProcess to Injecting process
duplicated handle

= Allocating memory for the shellcode in the

Creal_jng an infinite target process using VirtualAllocEx
running thread

Executing code
Injection

Setting up
ReadProcessMemory

First problem
Access violation

Creating an infinite
running thread

Executing code
Injection

Access violation
return address is 0

Process flow

Call ReadProcessMer

Memory is read to |

Return to address on s

Process stack

900000

15

Access violation

return address is RtIExitUserThread

Setting up
ReadProcessMemory

First problem
Access violation

Creating an infinite
running thread

Executing code
Injection

Process flow

Call ReadProcessMe

Memory is read to

Return to address on

I(I(l

Process stack

ExitUserThread

1000000

000000

0000000

~+x00000000

16

Copying RtlExitUserThread
to the dummy stack

Setting up
ReadProcessMemory

= Kernel32.dll imports RtlExitUserThread from
ntdll.dll

ALEEIElel = REtlExitUserThread address should exist in

Access violation
kernel32.dll IAT (Import Address Table)
= kernel32.dll base address and IAT address are
Creating an infinite identical between processes
running thread = Finding RtlExitUserThread in injecting process and

copying it in the target process

Executing code
Injection

How to copy data on the target process

= NtQueueApcThread calls a
function in a process and
passes 3 parameters to it

= RtlCopyMemory gets 3
parameters

= Copying data using
NtQueueApcThread and
RtlCopyMemory

Injecting process Target process thread

NtQueueApcThread RtlCopyMemory

Target process thread handle Destination

RtlCopyMemory Source

Destination Length

Source

Length

18

Side note -

Recreating shellcode in a target process

= The method described earlier can be used to recreate a
shellcode in the target process:

= Finding each byte of the shellcode in the target process
= Copying the shellcode byte by byte in the target process

= \We've found a way to recreate shellcode in a target
process!

Finalizing the code injection

Please inject-me, a x64 code injection

An Infinite running thread is needed
Describing a new problem

Setting up
ReadProcessMemory = Set RIP register to ReadProcessMemory
= Really?
First problem = Setting the RIP register of a thread created suspended
Access violation causes exception

= Exception 0xCO00000D, STATUS_INVALID_PARAMETER

: e = The thread needs to initialize before it is manipulated
Creating an infinite

running thread = A thread created in the target process will terminate
before it can be manipulated

= Running an infinitely running thread will allow it to
Executing code initialize
Injection

An Infinite running thread is needed

Looking at RtlUserThreadStart

Hu=

; Exported entry 1583. RtlUserThreadStart

public RtlUserThreadStart
RtlUserThreadStart proc near

3 unwind { // __C_specific_handler
sub rsp, 48h
mov r9, rcx

loc_18006F@47:

; _try { // __except at loc_18086F077

OV rax, cs:Kernel32ThreadInitThunkFunction
test rax, rax

jz short loc_18006F@63

= "PI=

r8, rdx

rdx, rcx loc_18006F063:

ecx, ecx mov rex, rdx

cs:__guard_dispatch_icall_fptr s

short loc_18006F083 call cs: vard dispatch icall fpt
"oV eCx, eax
call RtlExitUserThread

i1

loc_18006F077:

mov edx, eax

or rcx, OFFFFFFFFFFFFFFFFh
call IwTerminateProcess

nop

__except(RtlUserThreadStart$f

22

An Infinite running thread is needed

Looking at RtlUserThreadStart

s
LdrpDispatchUserCallTarget proc near
5 _unwind { // LdrpICallHandler
mov rll, cs:qword_18016F370
mov rle, rax
shr rle, 9
mov rll, [rl1+rle*8]
mov rle, rax
shr rle, 3
test al, @Fh
jnz short loc_180@912B6
[l s =]
bt rll, rle
jnb short loc_180@912B6
3 4 Yy
r_— jmp rax I
| loc_18@0912B6:
or rle, 1
bt rll, rle
jnb short loc_1800912C3
 J
[l) = Ll s -2
jmp rax
loc_18@0912C3:
mov rled, 1
jmp LdrpHandleInvalidUserCallTarget

;5 } // starts at 180091290
LdrpDispatchUserCallTarget endp

An Infinite running thread is needed

Running the infinitely running thread

Setting up
ReadProcessMemory = Allocating RWX memory for jmp RBX opcode using
VirtualAllocEx
= | ooking for jump RBX opcode in our version of ntdll (opcode:

First problem

Access violation Oxffe3)

= Copying jump RBX opcode in the target process using method
described earlier

Creating an infinite = Creating suspended thread using CreateRemoteThread
running thread Function starting at jmp RBX opcode

= Setting RBX to point to jmp RBX opcode using
SetThreadContext

Executing code = Resuming the thread

Injection

Executing the code injection

Setting up
ReadProcessMemory

= Suspend the thread and check if RIP is at jmp RBX

opcode address
First problem = Setting the thread context using SetThreadContext
Access violation

= Resuming the thread and waiting for the injection to

occur
Creating an infinite = Using WaitForSingleObject to wait until the thread
running thread is done

= Executing the shellcode!

Executing code
injection

Demo

Please inject-me, a x64 code injection

I

A Type here to search

A & Q)

09 PM

7/24/2019 El

Thank you!

For the full research paper visit this link | http://bit.ly/MeX64

http://bit.ly/MeX64

