
By Alon Weinberg

Please inject-me, a x64 code injection

August 2019



I’m a Security researcher!
I’ve been working at Deep Instinct, Since 2017
And I was in the IDF Cyber Unit for 4.5 years

Alon Weinberg



Please inject-me
a x64 code injection

Intro

▪ Code injection and its 
importance

▪ Introducing Inject-Me

Technical background

▪ ReadProcessMemory
▪ X64 WinAPI calling 

convention

Inject-Me - Detailed flow

▪ Abusing 
ReadProcessMemory

▪ Copying data on the target 

process
▪ Finalizing the injection

▪ Infinite running thread

▪ Execution
▪ Demo

4



Intro
Please inject-me, a x64 code injection

5



Code injection is the general term of 
introducing (or "injecting") code into a process 

and executing it from the process context.

Injecting process target process

Inject code

MessageBox
code

Execute code

What is code injection

6



Why is code injection
important?

Benign use of code injection

▪ Security solutions

▪ Adding functionality

▪ Monitoring, Analysis and Research

7

Malicious use of code injection:

▪ Stealth - Hiding malware presence

▪ Evasion - Bypassing security 
solutions

▪ Stealing information from another 
process



Introducing inject-me

▪ How it all started

▪ A new code injection for x64 

▪ The idea behind Inject-Me

▪ “Injection-less” code injection

8



Technical background
Please inject-me, a x64 code injection

9



▪ Reads memory from a process

By running the function remotely in a target 
process, and controlling the parameters 
passed using SetThreadContext one can 
read\inject a shellcode into the target 
process.

ReadProcessMemory function

10



▪ Integer arguments 
passed in registers RCX, 
RDX, R8, and R9

▪ Arguments after the 
fourth argument passed 
on the stack

▪ Function can be set with 
four or less arguments 
remotely using 
SetThreadContext

hProcess

lpBaseAddress

lpBuffer

nSize

lpNumberOfBytesRead

ReadProcessMemory

RCX =

RDX =

R8 =

R9 =

RtlExitUserThread

0x00000000

0x00000000

0x00000000

0x00000000

Stack

lpNumberOfBytesRead

Return Address=

Ignored

Ignored

Ignored

Ignored

On stack

X64 WinAPI calling convention

11



Details and flow of the 
Injection-less code injection

Setting up 
ReadProcessMemory

First problem
Access violation

Creating an infinite 
running thread

Executing code 
injection

12



▪ ReadProcessMemory gets 5 arguments

▪ Only 4 arguments can be passed through 
registers

▪ Fifth parameter can be NULL

▪ Creating a dummy stack - VirtualAllocEx
allocates memory in a process and zeroes it

▪ Dummy stack will be used later as the stack 
when calling ReadProcessMemory

Setting up 
ReadProcessMemory

First problem
Access violation

Creating an infinite 
running thread

Executing code 
injection

Setting up ReadProcessMemory
for abuse

13



▪ Using DuplicateHandle to duplicate injecting 
process handle to the target process

▪ Setting hProcess to Injecting process 
duplicated handle

▪ Allocating memory for the shellcode in the 
target process using VirtualAllocEx

Setting up ReadProcessMemory
for abuse

14

Setting up 
ReadProcessMemory

First problem
Access violation

Creating an infinite 
running thread

Executing code 
injection



Access violation 
return address is 0

0x00000000

Process stackProcess flow

0x00000000

0x00000000

0x00000000

0x00000000

Call ReadProcessMemory

Memory is read to buffer

Return to address on stack

15

Setting up 
ReadProcessMemory 

First problem
Access violation

Creating an infinite 
running thread

Executing code 
injection



Access violation 
return address is RtlExitUserThread

0x00000000

Process stackProcess flow

0x00000000

0x00000000

RtlExitUserThread

0x00000000

Call ReadProcessMemory

Memory is read to buffer

Return to address on stack

16

Setting up 
ReadProcessMemory 

First problem
Access violation

Creating an infinite 
running thread

Executing code 
injection



Copying RtlExitUserThread
to the dummy stack

▪ Kernel32.dll imports RtlExitUserThread from 
ntdll.dll

▪ RtlExitUserThread address should exist in 
kernel32.dll IAT (Import Address Table)

▪ kernel32.dll base address and IAT address are 
identical between processes

▪ Finding RtlExitUserThread in injecting process and 
copying it in the target process

17

Setting up 
ReadProcessMemory 

First problem
Access violation

Creating an infinite 
running thread

Executing code 
injection



▪ NtQueueApcThread calls a 
function in a process and 
passes 3 parameters to it

▪ RtlCopyMemory gets 3 
parameters

▪ Copying data using 
NtQueueApcThread and 
RtlCopyMemory

How to copy data on the target process

Destination

Source

Length

Injecting process

NtQueueApcThread

RtlCopyMemory

Target process thread handle Destination

Source

Length

Target process thread

RtlCopyMemory

18



Side note –
Recreating shellcode in a target process

▪ The method described earlier can be used to recreate a 
shellcode in the target process:

▪ Finding each byte of the shellcode in the target process

▪ Copying the shellcode byte by byte in the target process

▪ We’ve found a way to recreate shellcode in a target 
process!

19



Finalizing the code injection
Please inject-me, a x64 code injection

20



An Infinite running thread is needed
Describing a new problem

▪ Set RIP register to ReadProcessMemory

▪ Really?

▪ Setting the RIP register of a thread created suspended 
causes exception

▪ Exception 0xC000000D, STATUS_INVALID_PARAMETER

▪ The thread needs to initialize before it is manipulated

▪ A thread created in the target process will terminate 
before it can be manipulated

▪ Running an infinitely running thread will allow it to 
initialize

21

Setting up 
ReadProcessMemory 

First problem
Access violation

Creating an infinite 
running thread

Executing code 
injection



An Infinite running thread is needed
Looking at RtlUserThreadStart

22



An Infinite running thread is needed
Looking at RtlUserThreadStart

23



An Infinite running thread is needed
Running the infinitely running thread

▪ Allocating RWX memory for jmp RBX opcode using 
VirtualAllocEx

▪ Looking for jump RBX opcode in our version of ntdll (opcode: 
0xffe3)

▪ Copying jump RBX opcode in the target process using method 
described earlier

▪ Creating suspended thread using CreateRemoteThread
function starting at jmp RBX opcode

▪ Setting RBX to point to jmp RBX opcode using 
SetThreadContext

▪ Resuming the thread

24

Setting up 
ReadProcessMemory 

First problem
Access violation

Creating an infinite 
running thread

Executing code 
injection



Executing the code injection

▪ Suspend the thread and check if RIP is at jmp RBX 
opcode address

▪ Setting the thread context using SetThreadContext

▪ Resuming the thread and waiting for the injection to 
occur

▪ Using WaitForSingleObject to wait until the thread 
is done

▪ Executing the shellcode!

25

Setting up 
ReadProcessMemory 

First problem
Access violation

Creating an infinite 
running thread

Executing code 
injection



Demo
Please inject-me, a x64 code injection

27



28



Thank you!
For the full research paper visit this link | http://bit.ly/MeX64

29

http://bit.ly/MeX64

