Please inject-me, a x64 code injection By Alon Weinberg

Alon Weinberg

I'm a Security researcher!
I've been working at Deep Instinct, Since 2017
And I was in the IDF Cyber Unit for 4.5 years

Please inject-me

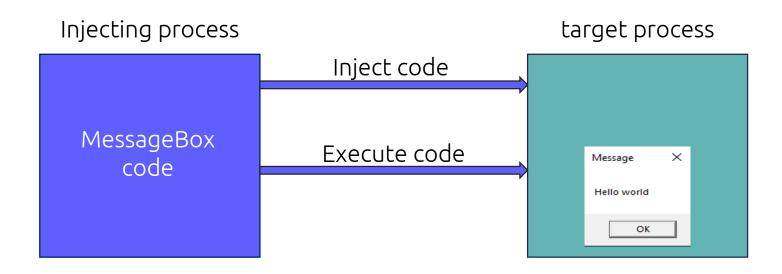
a x64 code injection

Intro

- Code injection and its importance
- Introducing Inject-Me

Technical background

- ReadProcessMemory
- X64 WinAPI calling convention


Inject-Me - Detailed flow

- Abusing ReadProcessMemory
- Copying data on the target process
- Finalizing the injection
 - Infinite running thread
 - Execution
- Demo

Intro Please inject-me, a x64 code injection

What is code injection

Code injection is the general term of introducing (or "injecting") code into a process and executing it from the process context.

Why is code injection important?

Malicious use of code injection:

- Stealth Hiding malware presence
- Evasion Bypassing security solutions
- Stealing information from another process

Benign use of code injection

- Security solutions
- Adding functionality
- Monitoring, Analysis and Research

Introducing inject-me

- How it all started
- A new code injection for x64
- The idea behind Inject-Me
- "Injection-less" code injection

Technical background

Please inject-me, a x64 code injection

ReadProcessMemory function

Reads memory from a process

By running the function remotely in a target process, and controlling the parameters passed using **SetThreadContext** one can read\inject a shellcode into the target process.

```
BOOL ReadProcessMemory(
HANDLE hProcess,
LPCVOID lpBaseAddress,
LPVOID lpBuffer,
SIZE_T nSize,
SIZE_T *lpNumberOfBytesRead
);
```

X64 WinAPI calling convention

- Integer arguments
 passed in registers RCX,
 RDX, R8, and R9
- Arguments after the fourth argument passed on the stack
- Function can be set with four or less arguments remotely using
 SetThreadContext

Details and flow of the Injection-less code injection

Setting up ReadProcessMemory

Creating an infinite running thread

First problem Access violation

Setting up ReadProcessMemory for abuse

Setting up
ReadProcessMemory

First problem
Access violation

Creating an infinite running thread

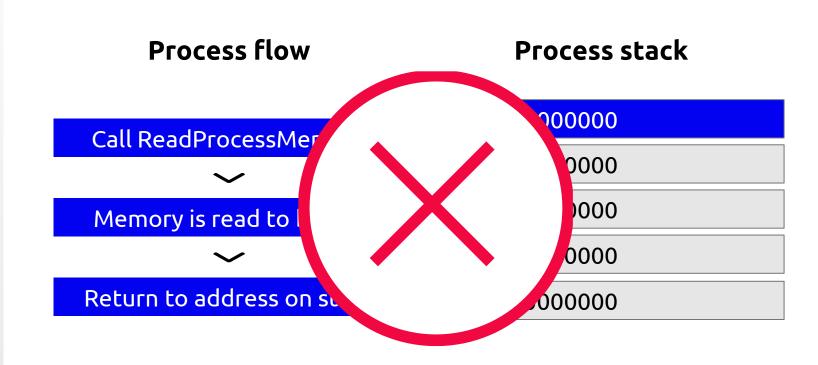
- ReadProcessMemory gets 5 arguments
- Only 4 arguments can be passed through registers
- Fifth parameter can be NULL
- Creating a dummy stack VirtualAllocEx allocates memory in a process and zeroes it
- Dummy stack will be used later as the stack when calling ReadProcessMemory

Setting up ReadProcessMemory for abuse

Setting up
ReadProcessMemory

First problem
Access violation

Creating an infinite running thread

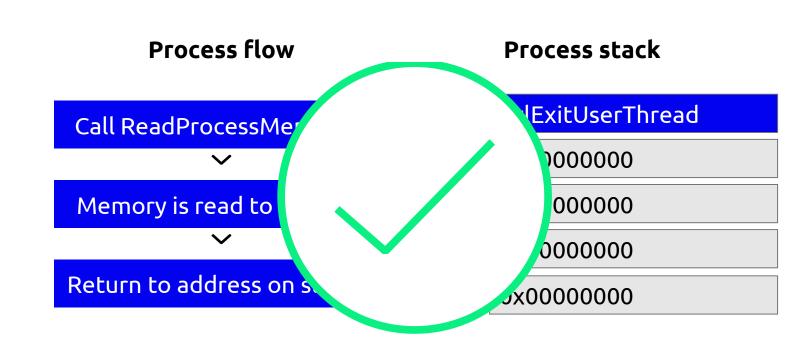

- Using DuplicateHandle to duplicate injecting process handle to the target process
- Setting hProcess to Injecting process duplicated handle
- Allocating memory for the shellcode in the target process using VirtualAllocEx

Access violation return address is 0

Setting up ReadProcessMemory

First problem
Access violation

Creating an infinite running thread



Access violation return address is RtlExitUserThread

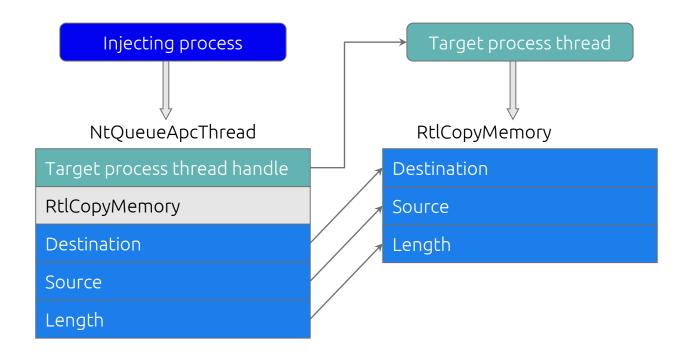
Setting up ReadProcessMemory

First problem
Access violation

Creating an infinite running thread

Copying RtlExitUserThread to the dummy stack

Setting up ReadProcessMemory


First problem
Access violation

Creating an infinite running thread

- Kernel32.dll imports RtlExitUserThread from ntdll.dll
- RtlExitUserThread address should exist in kernel32.dll IAT (Import Address Table)
- kernel32.dll base address and IAT address are identical between processes
- Finding RtlExitUserThread in injecting process and copying it in the target process

How to copy data on the target process

- NtQueueApcThread calls a function in a process and passes 3 parameters to it
- RtlCopyMemory gets 3 parameters
- Copying data usingNtQueueApcThread andRtlCopyMemory

Side note -

Recreating shellcode in a target process

- The method described earlier can be used to recreate a shellcode in the target process:
 - Finding each byte of the shellcode in the target process
 - Copying the shellcode byte by byte in the target process
- We've found a way to recreate shellcode in a target process!

Finalizing the code injection

Please inject-me, a x64 code injection

An Infinite running thread is needed Describing a new problem

Setting up ReadProcessMemory

First problem
Access violation

Creating an infinite running thread

- Set RIP register to ReadProcessMemory
 - Really?
- Setting the RIP register of a thread created suspended causes exception
 - Exception 0xC000000D, STATUS_INVALID_PARAMETER
 - The thread needs to initialize before it is manipulated
- A thread created in the target process will terminate before it can be manipulated
- Running an infinitely running thread will allow it to initialize

An Infinite running thread is needed

Looking at RtlUserThreadStart

An Infinite running thread is needed

Looking at RtlUserThreadStart

An Infinite running thread is needed

Running the infinitely running thread

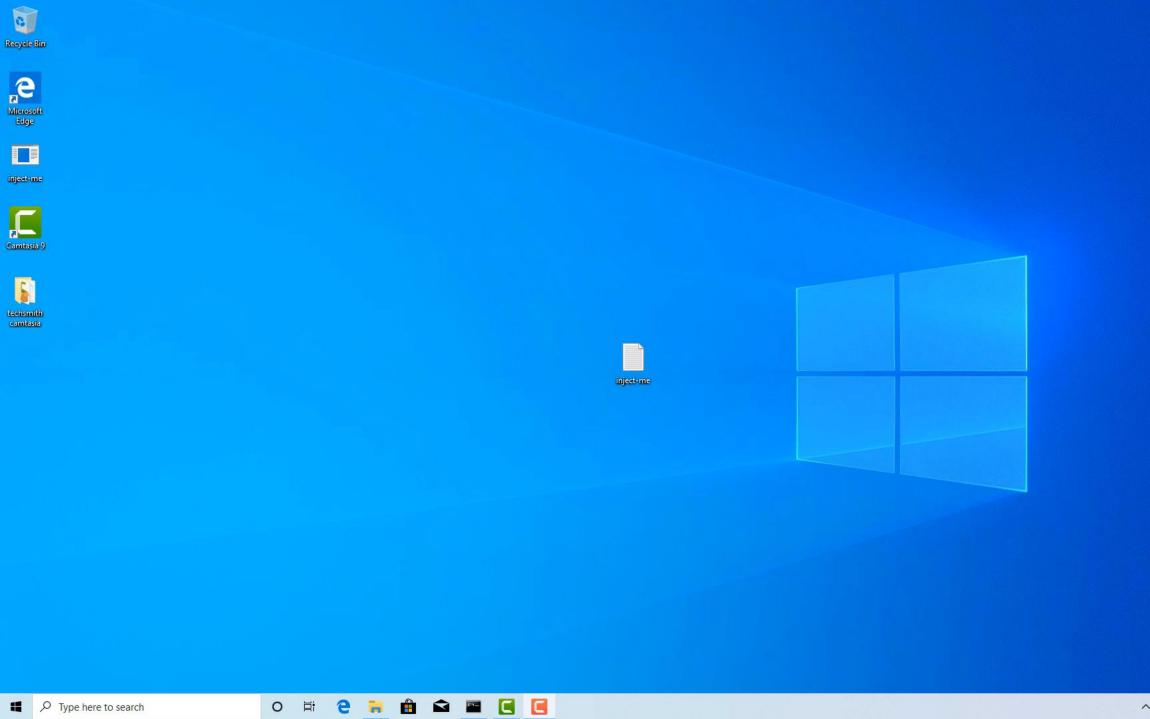
Setting up ReadProcessMemory

First problem
Access violation

Creating an infinite running thread

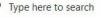
- Allocating RWX memory for jmp RBX opcode using VirtualAllocEx
- Looking for jump RBX opcode in our version of ntdll (opcode: 0xffe3)
- Copying jump RBX opcode in the target process using method described earlier
- Creating suspended thread using CreateRemoteThread function starting at jmp RBX opcode
- Setting RBX to point to jmp RBX opcode using SetThreadContext
- Resuming the thread

Executing the code injection


Setting up
ReadProcessMemory

First problem
Access violation

Creating an infinite running thread


- Suspend the thread and check if RIP is at jmp RBX opcode address
- Setting the thread context using SetThreadContext
- Resuming the thread and waiting for the injection to occur
 - Using WaitForSingleObject to wait until the thread is done
- Executing the shellcode!

Demo Please inject-me, a x64 code injection

Thank you!

For the full research paper visit this link | http://bit.ly/MeX64