
BSD Security

Fundamentals

Sean Lewis

sml@subterrain.net

http://www.subterrain.net

Scope and Scale

• Focus: FreeBSD - enterprise hardware
support and most 'mainstream' of the open
source BSD trees.

• Security refresher and some new and
interesting BSD security information.

• Emphasis on host-based security, one of the
first layers of the security 'onion'
complimented with network-level security
[defense in-depth].

BSD – making inroads in the

Enterprise market

• BSD and systems w/ BSD frameworks being
deployed in the enterprise and with the end
user.

• Nokia firewalls - run FireWall-1 on IPSO
[based on FreeBSD 3.2]

• Juniper's Internet backbone router products,
designed for high-growth, high-capacity
networks, use code from FreeBSD.

• Other commercial BSD implementors include
Yahoo! and LinkExchange

The Basics

• If modifying an existing system, especially in
a production environment, make backups!

• Unnecessary services - go through
/etc/inetd.conf and rc.conf; disable what you
don't need [inetd.conf now shipped with
everything off by default] [rc.conf - disable
sendmail, SMTP and submission ports
25/587]

• Work with the latest version of the OS -
tracking STABLE is the best idea

Encrypted Communications

• Disable telnet (default in recent FreeBSD
releases) and enable SSH. OpenSSH is
included in the FreeBSD base system.

• Upgrade all your systems to OpenSSH 3.4p1
and use SSH version 2 with privilege
separation.

• Enable the sftp subsystem built into the
SSHv2 protocol rather than a standard ftpd
implementation if possible.

• Set up public key authentication with SSH
[DSA keys!] to prevent password
transmission, encrypted or otherwise!

File System Lockdown

• Partition out as much as possible; /, /usr, /var,
/tmp at a minimum. /home and /usr/local
should be considered as well.

• Mount non /usr or / [for /sbin] filesystems with
the 'nosuid' argument, especially /tmp.

• Search for and remove suid bits off of non-
used binaries [especially uucp - setgid]

• Use the chflags to set variables such as
sappnd on log files, schg on system binaries,
etc.

• [Explain different securelevel aware file
variables here - sappnd, schg]

Kernel Securelevels

• Kernel securelevels allow variable
security level increases on the fly.

• Levels range from -1 -> 3, -1 and 0 are
referred to as 'insecure mode'.

• Securelevels can only be raised, not
lowered, once the system is in multi-
user mode.

Kernel Securelevels [cont.]

• Securelevel 1 - sappnd and schg flags can
not be disabled - LKMs may not be loaded or
unloaded.

• Securelevel 2 - Securelevel 1 + no writing to
disks except for mount(2). Time changes
clamped to +/- 1 second.

• Securelevel 3 - Securelevel 2 + IPFW rules
cannot be modified.

• Schg flag on files in /, /bin, /usr/bin, /sbin,
/usr/sbin/ for maximum effectiveness.

Sysctl and rc.conf variables

• [sysctl] net.inet.tcp.blackhole=2 and net.inet.udp.blackhole=1 -
don't generate RSTs on connection attempts to ports with no
socket listening [TCP] and doesn't generate an ICMP port
unreachable message on a port with no socket listening [UDP].
This breaks traceroute.

• [rc.conf] kern_securelevel_enable="YES", kern_securelevel="X"
- enable kernel securelevel

• [rc.conf] icmp_drop_redirect="YES" - drop ICMP redirect
packets. you don't want these.

• [rc.conf] tcp_drop_synfin="YES" - drop packets with SYN+FIN
bits set. breaks RFC, do it anyway! SYN+FIN scans are
frequent.

• [rc.conf] clear_tmp_enable="YES" - wipe /tmp on boot.

Secure your services

• Start potentially dangerous programs such as
bind in a chroot'd environment. Many popular
services now support chroot() jail
functionality. [named, sshd, httpd]

• log_in_vain="YES" in rc.conf - show
connections to non-listening tcp/udp ports -
goes well with robust packet filtering ruleset.

• Use packet filtering software such as IPFW or
ipfilter to restrict access to services, even if
the machine sits behind a corporate firewall
[defense in depth!]

Serving files with ftpd

• FreeBSD powers large FTP software sites
like ftp.cdrom.com - securely!

• Put individual users in the /etc/ftpchroot file to
restrict them to their $HOME.

• Start ftpd with -l -l to enable extended
logging.

• If running an anonymous archive, use ftpd -A
[only allow anonymous connections] and -r
[read-only mode for the server]

Logging

• Start syslogd with the '-ss' flags to prevent the
daemon from opening 514/udp.

• Centralize syslog to a central server in
addition to local logging: *.*
@remotehost.org

• Add /var/log/ftpd for for ftp.*

• Add /var/log/security for security.* [IPFW logs
on security facility; allows for parsing of ipfw
logs via 'ipfw add deny log..' command.

Nifty kernel tricks

• www.trojanproof.org trojan detection kernel
patch [OpenBSD/FreeBSD] - alerts based on
md5 variations on files executed on your
system; works well with Tripwire/AIDE.

• cerber.sf.net - real time interception and
logging of potentially dangerous system calls;
execve(), ptrace(), setuid(), etc. all
configurable via sysctl commands. excellent
logging. [think entercept functionality for BSD]

• Disable BPF in your kernel - uncomment
'pseudo-device bpf [n]' in your kernel. This
prevents an attacker from sniffing traffic
coming off your connection.

Keeping people out

• Use TCP wrappers [/etc/hosts.allow] to allow /
deny access to certain TCP services. FTP /
SSH / other potentially non 'public' services
[not as useful = HTTP and SMTP].

• Use AllowUsers / AllowGroups SSH
configuration options to restrict SSH usage to
certain users and groups. This works well
along with TCP wrapper usage and privilege
separation.

• Give users who only require ftp access the
/sbin/nologin shell to prevent access to a 'real'
shell.

Checking your system

• /usr/ports/security/nmap - port scan yourself
to check for strange services.

• /usr/ports/security/whisker - audit your web
server for potential vulnerabilities

• /usr/ports/security/tripwire-1.31 - academic
source release of tripwire, file integrity
assurance.

• /usr/ports/security/snort - lightweight NIDS
implementation, http://www.snort.org.

Other tips and tricks
• Use ntpdate to synch your clock with a time

server [e.g. ntp.nasa.gov]. Crontab it routinely
to keep it reliable.

• In /etc/ttys change the 'secure' flag to
'insecure' on each local TTY to prevent direct
root login; login should always be done
through a user account and then 'su' to root.

• Enable sudo for restricting the root password
on your system; grant certain users root
privileges for certain commands.

• Enable 'pseudo-device snp 4' and use the
'watch' command to non-interactively attach
yourself to a user's tty. Nifty :)

• Turn off what you don't use! complexity does

Links to related material

• This presentation:

http://www.subterrain.net/presentations/

• FreeBSD security advisories and info:

http://www.freebsd.org/security/

• Free FreeBSD stuff courtesy of:

FREEBSDMALL.COM. Thanks Murray!

