
BLACK OPS OF TCP/IP

Spliced NAT2NAT And Other

Packet-Level Misadventures

Dan Kaminsky, CISSP

DoxPara Research

www.doxpara.com

Where I‟m Coming From…

 Black Hat 2001
 Impossible Tunnels through Improbable Networks

with OpenSSH
 Getting Out:

ProxyCommands for Non-TCP comm layers

 HTTP, SOCKS, UDP, Packet Radio*, AIM/Yahoo*

 Coming In:
Active Connection Brokering for NAT2NAT

 One host exports SSHD to broker

 Other host imports access from broker

 Passing Through:
Dynamic Forwarding for Psuedo-VPN Work

 Web Browsing, Dialpad(Split-H323), etc.

Interesting Problems

 Instant Portscan
 “Is it possible to discover instantaneously what network

services have been made available, even on massive
networks?”

 Guerrila Multicast
 “Is it possible to send a single packet to multiple

recipients, using today‟s multicast-free Internet?”

 “NATless NAT”
 “Is it possible to share a globally addressable IP address

without translating private IP ranges a la NAT?”

 Is it possible to allow incoming connections to an IP
multiplexed in this manner?

 NAT Deadlock Resolution
 “Is it possible to establish a TCP connection between

two hosts, both behind NATs?”

On Possibility

 Restraint Free Engineering
 “Abandon All Practicality, Ye Who Enter Here”

 “It‟s amazing what you can do once security is no
longer a concern.”

 You‟ve got what you‟ve got. Make interesting
things happen.
 It might end up practical.

 It might end up secure.

 Right now, it‟s impossible. Fix that first.
 Maybe.

ObThreeWayHandshakeIntro

Connection Request (Alice -> Bob)

SYN: I want to talk to you

Connection Response (Bob -> Alice)

SYN|ACK: OK, lets talk.

RST|ACK: I ain‟t listening

Connection Initiation (Alice -> Bob)

ACK: OK, beginning conversation.

What Do You Want?

 Port Ranges
 Local Port: What application requested the

connection. Usually a random number, 0-65535.
 0 is a valid port

 Remote Port: What application accepted the
connection. Usually a “known number”
 80 for HTTP

 143 for IMAP

 443 for HTTP/SSL

 IP handles who we‟re talking to; Ports handle what
we want from them

How Do You Want It?

Sequence Numbers

 32 bit number, randomly generated, must

be reflected by the opposite party in a TCP

handshake

After initial reflection, used to relay

information about successful packet

acquisition

SYN Cookies

 Developed in ‟96, when SYN floods became
common
 ACK reflects SEQ# of SYN|ACK

 Encrypts connection state into the SYN|ACK‟s
SEQ#

 Therefore, you can use legitimate remote hosts –
instead of kernel memory – to store handshake
state

 Ahhh…but SYN|ACK also reflects SEQ# of
SYN…

Stateless Pulse Scanning

 Instant Portscan
 “Is it possible to discover instantaneously what

network services have been made available, even
on massive networks?”

 Answer: Yes, practically, even securely
 Separate scanner and listener processes

 Sending
 Directly send n SYN packets

 Same local port

 SYN cookies

 Receiving
 Kernel filter packets arriving to local port

 Verify SYN Cookie – did we actually scan this host?

 Mark that port was up(SYN|ACK)or down(RST|ACK)

Observed Results

 Since no state is maintained within the
scanner, we can send SYNs at wire speed

 Found ~8300 web servers on a corporation‟s
Class B
 Time spent: 4 Seconds

 Collisions
 Initial SYNs might collide, but SYN|ACKs resend

 SYN|ACKs are given RSTs by present
kernels automatically
 The SYNs were generated in userspace – the

kernel has no idea the connection request was
ever sent

Implications

 Userspace manipulation of packets can lead
to less overhead
 Kernels are optimized to talk to other hosts, not

simply to scan them

 Packet content can be overloaded
 A random field can always be replaced with

encrypted data (and vice versa)
 This is the heart of kleptography

 Elegant solutions sometimes can be
reapplied elsewhere
 SYN cookies made SYN reception more efficient

 SYN|ACK cookies make SYN transmission more
efficient

On Packet Structure

Packets are “strangely ordered”

Next hop, previous hop, next protocol, next

protocol, checksum, first hop, last hop, first

app, last app, checksum, god knows what,

checksum

Why not sort everything? Why so much

redundancy? Isn‟t it inefficient?

Layers: Not What, But Who

 One medium, many messages
 Listeners reconstruct meanings relevant to

themselves, ignore the rest

 Managed responsibility

 Fields are out of order, occasionally because
they‟re addressed to different entities
 Name and address repeated inside a business

letter and on the envelope

 Messages at one layer can modulate
messages received at another
 Insufficient postage will prevent a correctly

addressed letter from getting sent

 Incorrect internal address has unknown effects

Layer Duties

Layer 1: Medium

Layer 2: Previous Hop <-> Next Hop

Layer 3: First Hop <-> Last Hop

Layer 4: Previous App <-> Next App

Layer 5: First App <-> Last App

Layer Redundancy

 L2: Broadcast MAC Address

 FF:FF:FF:FF:FF:FF

 Absolute

 L3: Broadcast IP Address

 Last IP of Subnet

 Relative

 Sending to it is known as a Directed Broadcast

 Often blocked, if it can be detected

 Detection can be…suppressed.

Broadcast GHosts

 Guerrila Multicast
 “Is it possible to send a single packet to multiple

recipients, using today‟s multicast-free Internet?”

 Answer: Yes, barely.

 Link a unicast IP to a broadcast MAC
address; all responses to that IP will be
broadcast throughout a subnet
 No individual client need duplicate the datastream

– the switch will issue copies of the data to all
downstream hosts

The Summoning

 DHCP for an IP
 May or may not use broadcast MAC in DHCP

request – just trying to validate that nobody else is
using the IP

 Answer ARP requests for that IP with
Broadcast MAC

 Issue L4 requests against a remote host,
unicasted via layer 3, with responses
broadcasted locally at layer 2
 Elegance has left the building

Firewall Issues

 NAT
 100% NAT penetration, as long as the

implementation doesn‟t refuse to NAT for a
broadcast MAC
 PIX

 Multicast through NAT!

 UDP
 Remote side can send data forever – as long as it

keeps packets coming in before the UDP state
expires, no further data is required from behind
the wall

TCP w/ Guerrila Multicast

 Without any listeners, stream dies

 With one listener, stream can operate
normally

 With many listeners, only one should
participate in acknowledging the stream
 If that one dies, another should take its place

 Solution: Random delays
 On reception of a packet to be acknowledged,

queue a response within the next 50-1500ms

 Broadcast response

 If another host broadcasted a response before you
had the chance to, unschedule your response

Recontextualizing L2/L3

 One IP, normally linked to one host, can be
transformed at L2 into all hosts at a given
subnet
 This transformation is undetectable outside the

subnet

 Other Uses
 “All hosts” could also include “Many hosts” using

true L2 Multicast packets

 Do we have another other situation where one IP
“stands in” for many hosts?

MAC Address Translation

 “NATless NAT”
 “Is it possible to share a globally addressable IP

address without translating private IP ranges a la
NAT?”

 Is it possible to allow incoming connections to an
IP multiplexed in this manner?

 Answer: Yes.
 Keep the external IP on any and all hosts behind

the gateway

 Use NAT-style state management

 Multiplex on Layer 2
 Make ARP Table dynamic, based on each individual

connection

 Maintains L3 end-to-end integrity

Managing Local Ports

 NAT multiplexes several hosts into one IP
address by splitting on local port
 Already munging IP, might as well munge ports

too

 Some implementations make best efforts to match
local port inside the network w/ local port outside
 Birthday Paradox: Collision chance = 1 /

sqrt(range_of_local_ports) = 1/256

 If we can always match IP and Port, then we
can always maintain end-to-end correctness
 Only have a problem 1/256 connections to the

same host
 Alternate strategies exist – munge the SEQ#(problems

w/ Window overlap), use TCP Timestamps

The “Anyone Order A Pizza”

Protocol

Stateless approach: Ask everybody,
drop RSTs, forward everything else.

 Just broadcast to the IP

Actually works behind NATs, but you need
to catalog all the local Ips

Breaks down badly when two people are
listening on the same port
 Can split port range(1022, 2022, 3022, etc. all

being different instances of 22/ssh)

Incoming State

 Stateful Approach (“you ordered the last
one”)
 Ask everyone, but remember who‟s hosting

 Send to the first host that replies

 Increment the timer every time a packet is emitted
from the serving host for that port

 If no packets are emitted after a certain amount of
time, allow open registration once more

 “It‟s amazing what you can do once security
is not an issue.”

TCP Splicing

 NAT Deadlock Resolution
 “Is it possible to establish a TCP connection

between two hosts, both behind NATs?”

 Answer: Yes…but it ain‟t pretty.
 Convince each firewall that the other accepted the

connection, using a connection broker to
coordinate port selection and tunnel/spoof
SYN|ACKs
 Layers will need to be played against eachother to

prevent certain otherwise desirable messaging behaviors
from going too far

An Analogy

Bill Gates „n Larry Ellison

Why? They can call anyone they want –

their secretaries won‟t stop „em.

None of us can call them – their

secretaries will stop us.

 If Bill or Larry did call us, they‟d actually be

able to hear us reply.

Asymmetry is in the initiation

Setting Up

Alice and Bob both behind NATting
firewalls

 Firewalls authorize all outgoing sessions,
block all incoming sessions
 Block w/ state – no faking

 Only accept fully validated responses to
outgoing messages
 Ports must match

 SEQ#‟s must match

 Total outgoing trust, zero incoming trust

The Attempt

 Alice tries to send a message to Bob

 SYN hits Alice‟s firewall, is given global IP + entry

in state table “connection attempted”

 SYN travels across Internet

 SYN hits Bob‟s firewall, RST|ACK sent

 RST|ACK hits Alice‟s firewall, entry in state table

torn down, RST|ACK readdressed to Alice

 Alice gets nowhere

 Bob does the same thing

Analysis

Good

Entry in firewall state table, awaiting a reply

Bad

Negative reply, entry in state table

destroyed

Can we get the former without the

latter?

Doomed TTLs

 Packet first hits local firewall, gets NAT entry,
travels across Internet, hits remote firewall,
elicits the rejection.
 Good at the beginning of life, bad at end of life

 So shorten the packet‟s lifespan and it never goes
bad.

 TTL: Time To Live
 Maximum number of hops packet is allowed to

travel along the network before being dropped

 Used by IP to prevent routing loops

 Used by us to prevent state table from closing the
hole

New Paradigm

Now able to add Host/Port/SEQ#

combinations to firewall packet

acceptance rules

 Larry Ellison: “Bill Gates is going to call

here in the next two minutes, please put

his call through.”

Need to generate packets, though

Packets, Ports, Problems

 Three way handshake – SYN, SYN|ACK,
ACK
 Outgoing connections have SYNs and ACKs but

no SYN|ACKs

 Ports
 Need to agree on which ports are linking up

 Need to discover firewall multiplexing rules

 Timing
 Need to know when to attempt connection

 Solution to all three: Handshake Only
Connection Broker
 Involved only in setting up connection

Local Port Strategies

Some firewalls do best effort to match

Some increment from a fixed counter

Some use random local ports

Entropy cannot be differentiated – rule
from kleptography

As long as it‟s translated back…

Need to discover what strategy is being
used

Sequence

 Alice and Bob SYN Charlie 2x

 Charlie NFO Alice and Bob

 Alice and Bob SYN Charlie

 Alice and Bob DoomSYN Bob and Alice

 Alice and Bob SYN Charlie

 Charlie SYN|ACK Alice and Bob
 Throw details about port selection in IPID

 Alice and Bob DoomACK Bob and Alice

 Alice and Bob begin normal TCP session to
eachother, as if the other acknowledged
correctly

Tricking Firewalls/IDSs

 Alice can forge a connection from an arbitrary
IP by cooperating with Charlie

 Alice looks like she‟s connecting to Yahoo,
but is informing Charlie of the specifics of the
connection attempt

 Charlie replies as if he was Yahoo, and
begins a TCP stream of arbitrary data using
standard TCP splicing

 Alice continues to doom her
acknowledgments to Yahoo, and Charlie
keeps sending packets as Yahoo.

Conclusion

 Interesting things are possible

All code available for download at

http://www.doxpara.com

