
BLACK OPS OF TCP/IP

Spliced NAT2NAT And Other

Packet-Level Misadventures

Dan Kaminsky, CISSP

DoxPara Research

www.doxpara.com

Where I‟m Coming From…

 Black Hat 2001
 Impossible Tunnels through Improbable Networks

with OpenSSH
 Getting Out:

ProxyCommands for Non-TCP comm layers

 HTTP, SOCKS, UDP, Packet Radio*, AIM/Yahoo*

 Coming In:
Active Connection Brokering for NAT2NAT

 One host exports SSHD to broker

 Other host imports access from broker

 Passing Through:
Dynamic Forwarding for Psuedo-VPN Work

 Web Browsing, Dialpad(Split-H323), etc.

Interesting Problems

 Instant Portscan
 “Is it possible to discover instantaneously what network

services have been made available, even on massive
networks?”

 Guerrila Multicast
 “Is it possible to send a single packet to multiple

recipients, using today‟s multicast-free Internet?”

 “NATless NAT”
 “Is it possible to share a globally addressable IP address

without translating private IP ranges a la NAT?”

 Is it possible to allow incoming connections to an IP
multiplexed in this manner?

 NAT Deadlock Resolution
 “Is it possible to establish a TCP connection between

two hosts, both behind NATs?”

On Possibility

 Restraint Free Engineering
 “Abandon All Practicality, Ye Who Enter Here”

 “It‟s amazing what you can do once security is no
longer a concern.”

 You‟ve got what you‟ve got. Make interesting
things happen.
 It might end up practical.

 It might end up secure.

 Right now, it‟s impossible. Fix that first.
 Maybe.

ObThreeWayHandshakeIntro

Connection Request (Alice -> Bob)

SYN: I want to talk to you

Connection Response (Bob -> Alice)

SYN|ACK: OK, lets talk.

RST|ACK: I ain‟t listening

Connection Initiation (Alice -> Bob)

ACK: OK, beginning conversation.

What Do You Want?

 Port Ranges
 Local Port: What application requested the

connection. Usually a random number, 0-65535.
 0 is a valid port

 Remote Port: What application accepted the
connection. Usually a “known number”
 80 for HTTP

 143 for IMAP

 443 for HTTP/SSL

 IP handles who we‟re talking to; Ports handle what
we want from them

How Do You Want It?

Sequence Numbers

 32 bit number, randomly generated, must

be reflected by the opposite party in a TCP

handshake

After initial reflection, used to relay

information about successful packet

acquisition

SYN Cookies

 Developed in ‟96, when SYN floods became
common
 ACK reflects SEQ# of SYN|ACK

 Encrypts connection state into the SYN|ACK‟s
SEQ#

 Therefore, you can use legitimate remote hosts –
instead of kernel memory – to store handshake
state

 Ahhh…but SYN|ACK also reflects SEQ# of
SYN…

Stateless Pulse Scanning

 Instant Portscan
 “Is it possible to discover instantaneously what

network services have been made available, even
on massive networks?”

 Answer: Yes, practically, even securely
 Separate scanner and listener processes

 Sending
 Directly send n SYN packets

 Same local port

 SYN cookies

 Receiving
 Kernel filter packets arriving to local port

 Verify SYN Cookie – did we actually scan this host?

 Mark that port was up(SYN|ACK)or down(RST|ACK)

Observed Results

 Since no state is maintained within the
scanner, we can send SYNs at wire speed

 Found ~8300 web servers on a corporation‟s
Class B
 Time spent: 4 Seconds

 Collisions
 Initial SYNs might collide, but SYN|ACKs resend

 SYN|ACKs are given RSTs by present
kernels automatically
 The SYNs were generated in userspace – the

kernel has no idea the connection request was
ever sent

Implications

 Userspace manipulation of packets can lead
to less overhead
 Kernels are optimized to talk to other hosts, not

simply to scan them

 Packet content can be overloaded
 A random field can always be replaced with

encrypted data (and vice versa)
 This is the heart of kleptography

 Elegant solutions sometimes can be
reapplied elsewhere
 SYN cookies made SYN reception more efficient

 SYN|ACK cookies make SYN transmission more
efficient

On Packet Structure

Packets are “strangely ordered”

Next hop, previous hop, next protocol, next

protocol, checksum, first hop, last hop, first

app, last app, checksum, god knows what,

checksum

Why not sort everything? Why so much

redundancy? Isn‟t it inefficient?

Layers: Not What, But Who

 One medium, many messages
 Listeners reconstruct meanings relevant to

themselves, ignore the rest

 Managed responsibility

 Fields are out of order, occasionally because
they‟re addressed to different entities
 Name and address repeated inside a business

letter and on the envelope

 Messages at one layer can modulate
messages received at another
 Insufficient postage will prevent a correctly

addressed letter from getting sent

 Incorrect internal address has unknown effects

Layer Duties

Layer 1: Medium

Layer 2: Previous Hop <-> Next Hop

Layer 3: First Hop <-> Last Hop

Layer 4: Previous App <-> Next App

Layer 5: First App <-> Last App

Layer Redundancy

 L2: Broadcast MAC Address

 FF:FF:FF:FF:FF:FF

 Absolute

 L3: Broadcast IP Address

 Last IP of Subnet

 Relative

 Sending to it is known as a Directed Broadcast

 Often blocked, if it can be detected

 Detection can be…suppressed.

Broadcast GHosts

 Guerrila Multicast
 “Is it possible to send a single packet to multiple

recipients, using today‟s multicast-free Internet?”

 Answer: Yes, barely.

 Link a unicast IP to a broadcast MAC
address; all responses to that IP will be
broadcast throughout a subnet
 No individual client need duplicate the datastream

– the switch will issue copies of the data to all
downstream hosts

The Summoning

 DHCP for an IP
 May or may not use broadcast MAC in DHCP

request – just trying to validate that nobody else is
using the IP

 Answer ARP requests for that IP with
Broadcast MAC

 Issue L4 requests against a remote host,
unicasted via layer 3, with responses
broadcasted locally at layer 2
 Elegance has left the building

Firewall Issues

 NAT
 100% NAT penetration, as long as the

implementation doesn‟t refuse to NAT for a
broadcast MAC
 PIX

 Multicast through NAT!

 UDP
 Remote side can send data forever – as long as it

keeps packets coming in before the UDP state
expires, no further data is required from behind
the wall

TCP w/ Guerrila Multicast

 Without any listeners, stream dies

 With one listener, stream can operate
normally

 With many listeners, only one should
participate in acknowledging the stream
 If that one dies, another should take its place

 Solution: Random delays
 On reception of a packet to be acknowledged,

queue a response within the next 50-1500ms

 Broadcast response

 If another host broadcasted a response before you
had the chance to, unschedule your response

Recontextualizing L2/L3

 One IP, normally linked to one host, can be
transformed at L2 into all hosts at a given
subnet
 This transformation is undetectable outside the

subnet

 Other Uses
 “All hosts” could also include “Many hosts” using

true L2 Multicast packets

 Do we have another other situation where one IP
“stands in” for many hosts?

MAC Address Translation

 “NATless NAT”
 “Is it possible to share a globally addressable IP

address without translating private IP ranges a la
NAT?”

 Is it possible to allow incoming connections to an
IP multiplexed in this manner?

 Answer: Yes.
 Keep the external IP on any and all hosts behind

the gateway

 Use NAT-style state management

 Multiplex on Layer 2
 Make ARP Table dynamic, based on each individual

connection

 Maintains L3 end-to-end integrity

Managing Local Ports

 NAT multiplexes several hosts into one IP
address by splitting on local port
 Already munging IP, might as well munge ports

too

 Some implementations make best efforts to match
local port inside the network w/ local port outside
 Birthday Paradox: Collision chance = 1 /

sqrt(range_of_local_ports) = 1/256

 If we can always match IP and Port, then we
can always maintain end-to-end correctness
 Only have a problem 1/256 connections to the

same host
 Alternate strategies exist – munge the SEQ#(problems

w/ Window overlap), use TCP Timestamps

The “Anyone Order A Pizza”

Protocol

Stateless approach: Ask everybody,
drop RSTs, forward everything else.

 Just broadcast to the IP

Actually works behind NATs, but you need
to catalog all the local Ips

Breaks down badly when two people are
listening on the same port
 Can split port range(1022, 2022, 3022, etc. all

being different instances of 22/ssh)

Incoming State

 Stateful Approach (“you ordered the last
one”)
 Ask everyone, but remember who‟s hosting

 Send to the first host that replies

 Increment the timer every time a packet is emitted
from the serving host for that port

 If no packets are emitted after a certain amount of
time, allow open registration once more

 “It‟s amazing what you can do once security
is not an issue.”

TCP Splicing

 NAT Deadlock Resolution
 “Is it possible to establish a TCP connection

between two hosts, both behind NATs?”

 Answer: Yes…but it ain‟t pretty.
 Convince each firewall that the other accepted the

connection, using a connection broker to
coordinate port selection and tunnel/spoof
SYN|ACKs
 Layers will need to be played against eachother to

prevent certain otherwise desirable messaging behaviors
from going too far

An Analogy

Bill Gates „n Larry Ellison

Why? They can call anyone they want –

their secretaries won‟t stop „em.

None of us can call them – their

secretaries will stop us.

 If Bill or Larry did call us, they‟d actually be

able to hear us reply.

Asymmetry is in the initiation

Setting Up

Alice and Bob both behind NATting
firewalls

 Firewalls authorize all outgoing sessions,
block all incoming sessions
 Block w/ state – no faking

 Only accept fully validated responses to
outgoing messages
 Ports must match

 SEQ#‟s must match

 Total outgoing trust, zero incoming trust

The Attempt

 Alice tries to send a message to Bob

 SYN hits Alice‟s firewall, is given global IP + entry

in state table “connection attempted”

 SYN travels across Internet

 SYN hits Bob‟s firewall, RST|ACK sent

 RST|ACK hits Alice‟s firewall, entry in state table

torn down, RST|ACK readdressed to Alice

 Alice gets nowhere

 Bob does the same thing

Analysis

Good

Entry in firewall state table, awaiting a reply

Bad

Negative reply, entry in state table

destroyed

Can we get the former without the

latter?

Doomed TTLs

 Packet first hits local firewall, gets NAT entry,
travels across Internet, hits remote firewall,
elicits the rejection.
 Good at the beginning of life, bad at end of life

 So shorten the packet‟s lifespan and it never goes
bad.

 TTL: Time To Live
 Maximum number of hops packet is allowed to

travel along the network before being dropped

 Used by IP to prevent routing loops

 Used by us to prevent state table from closing the
hole

New Paradigm

Now able to add Host/Port/SEQ#

combinations to firewall packet

acceptance rules

 Larry Ellison: “Bill Gates is going to call

here in the next two minutes, please put

his call through.”

Need to generate packets, though

Packets, Ports, Problems

 Three way handshake – SYN, SYN|ACK,
ACK
 Outgoing connections have SYNs and ACKs but

no SYN|ACKs

 Ports
 Need to agree on which ports are linking up

 Need to discover firewall multiplexing rules

 Timing
 Need to know when to attempt connection

 Solution to all three: Handshake Only
Connection Broker
 Involved only in setting up connection

Local Port Strategies

Some firewalls do best effort to match

Some increment from a fixed counter

Some use random local ports

Entropy cannot be differentiated – rule
from kleptography

As long as it‟s translated back…

Need to discover what strategy is being
used

Sequence

 Alice and Bob SYN Charlie 2x

 Charlie NFO Alice and Bob

 Alice and Bob SYN Charlie

 Alice and Bob DoomSYN Bob and Alice

 Alice and Bob SYN Charlie

 Charlie SYN|ACK Alice and Bob
 Throw details about port selection in IPID

 Alice and Bob DoomACK Bob and Alice

 Alice and Bob begin normal TCP session to
eachother, as if the other acknowledged
correctly

Tricking Firewalls/IDSs

 Alice can forge a connection from an arbitrary
IP by cooperating with Charlie

 Alice looks like she‟s connecting to Yahoo,
but is informing Charlie of the specifics of the
connection attempt

 Charlie replies as if he was Yahoo, and
begins a TCP stream of arbitrary data using
standard TCP splicing

 Alice continues to doom her
acknowledgments to Yahoo, and Charlie
keeps sending packets as Yahoo.

Conclusion

 Interesting things are possible

All code available for download at

http://www.doxpara.com

