YACK OPS OF

~ © Spliced NAT2NAT A er
" Packet-Level Misadventures

Dan Kaminsky,
DoxPara Researc
www.doxpara.com

bkt

..+ Where I'm Coming From...

Black Hat 2001

Impossible Tunnels through Improbable Networks
with OpenSSH

Getting Out:
ProxyCommands for Non-TCP comm layers

o HTTP, SOCKS, UDP, Packet Radio*, AIM/Yahoo*
Coming In:
o Active Connection Brokering for NAT2NAT
o One host exports SSHD to broker
o Other host imports access from broker
Passing Through:
Dynamic Forwarding for Psuedo-VPN Work
o Web Browsing, Dialpad(Split-H323), etc.

Interesting Problems

Instant Portscan

“Is it possible to discover instantaneously what network
services have been made available, even on massive
networks?”

Guerrila Multicast

“Is it possible to send a single packet to multiple
recipients, using today’s multicast-free Internet?”

“NATless NAT”

“Is it possible to share a globally addressable IP address
without translating private IP ranges a la NAT?”

.1 Is it possible to allow incoming connections to an IP
%; multiplexed in this manner?

NAT Deadlock Resolution

“Is it possible to establish a TCP connection between
two hosts, both behind NATs?”

On Possibility

Restraint Free Engineering
“Abandon All Practicality, Ye Who Enter Here”

“It's amazing what you can do once security is no
longer a concern.”

= = You've got what you've got. Make interesting
things happen.
It might end up practical.
It might end up secure.
Right now, it's impossible. Fix that first.

%; ; Maybe.

ObThreeWayHandshakeintro

Connection Request (Alice -> Bob)
SYN: | want to talk to you

* % Connection Response (Bob -> Alice)
-3 SYN|ACK: OK, lets talk.
RST|ACK: | ain't listening
Connection Initiation (Alice -> Bob)
i-v ACK: OK, beginning conversation.

bkt

..» What Do You Want?

Port Ranges

Local Port: What application requested the
connection. Usually a random number, 0-65535.

0 is a valid port

Remote Port: What application accepted the
connection. Usually a “known number”

80 for HTTP

143 for IMAP

443 for HTTP/SSL

IP handles who we’re talking to; Ports handle what
we want from them

i.» How Do You Want It?

Sequence Numbers

32 bit number, randomly generated, must

| be reflected by the opposite party in a TCP
i handshake

After initial reflection, used to relay
iInformation about successful packet
acquisition

SYN Cookies

Developed in '96, when SYN floods became
common

ACK reflects SEQ# of SYN|ACK

Encrypts connection state into the SYN|ACK’s
SEQ#

Therefore, you can use legitimate remote hosts —
Instead of kernel memory — to store handshake
state

Ahhh...but SYN|ACK also reflects SEQ# of

i 5 SYN...

Stateless Pulse Scanning

#* |[nstant Portscan

“Is it possible to discover instantaneously what
network services have been made available, even

on massive networks?”

#* Answer: Yes, practically, even securely
Separate scanner and listener processes

Sending
Directly send n SYN packets

Same local port

& SYN cookies
%; Receiving

g Kernel filter packets arriving to local port
Verify SYN Cookie — did we actually scan this host?
Mark that port was up(SYN|ACK)or down(RST|ACK)

Observed Results

Since no state is maintained within the
scanner, we can send SYNSs at wire speed

Found ~8300 web servers on a corporation’s
Class B

Time spent: 4 Seconds

#* Collisions
Initial SYNs might collide, but SYN|ACKs resend

SYN|ACKSs are given RSTs by present

p kernels automatically
%; The SYNs were generated in userspace — the
e kernel has no idea the connection request was

ever sent

Implications

Userspace manipulation of packets can lead
to less overhead
Kernels are optimized to talk to other hosts, not
simply to scan them
Packet content can be overloaded

A random field can always be replaced with
encrypted data (and vice versa)
This is the heart of kleptography
% Elegant solutions sometimes can be
1 reapplied elsewhere
SYN cookies made SYN reception more efficient

SYN|ACK cookies make SYN transmission more
efficient

On Packet Structure

?52 # Packets are “strangely ordered”

Next hop, previous hop, next protocol, next
% protocol, checksum, first hop, last hop, first
' E app, last app, checksum, god knows what,

checksum

\Why not sort everything? Why so much
redundancy? Isn't it inefficient?

Layers: Not What, But Who

One medium, many messages

Listeners reconstruct meanings relevant to
themselves, ignore the rest

Managed responsibility
#* Fields are out of order, occasionally because
they're addressed to different entities
Name and address repeated inside a business
letter and on the envelope

Messages at one layer can modulate
messages received at another

Insufficient postage will prevent a correctly
addressed letter from getting sent

Incorrect internal address has unknown effects

Layer Duties

#* L ayer 1. Medium

Layer 2: Previous Hop <-> Next Hop
Layer 3: First Hop <-> Last Hop
Layer 4: Previous App <-> Next App
Layer 5: First App <-> Last App

Layer Redundancy

| 2: Broadcast MAC Address
FFFFFFFFFFFF
Absolute

L3: Broadcast IP Address
Last IP of Subnet
Relative

Sending to it is known as a Directed Broadca
» Often blocked, if it can be detected
» Detection can be...suppressed.

Broadcast GHosts

Guerrila Multicast

“Is it possible to send a single packet to multiple
recipients, using today’s multicast-free Internet?”

Answer: Yes, barely.

+ = Link a unicast IP to a broadcast MAC
address; all responses to that IP will be
broadcast throughout a subnet

No individual client need duplicate the datastream

: — the switch will issue copies of the data to all
%; downstream hosts

The Summoning

@I # DHCP foran IP

May or may not use broadcast MAC in DHCP
request — just trying to validate that nobody else is

using the IP
Answer ARP requests for that IP with
Broadcast MAC

#* |ssue L4 requests against a remote host,

unicasted via layer 3, with responses
broadcasted locally at layer 2

%; Elegance has left the building

bkt

1+ Firewall Issues

* NAT

100% NAT penetration, as long as the
iImplementation doesn’t refuse to NAT for a
broadcast MAC

PIX
Multicast through NAT!

N * UDP

Remote side can send data forever — as long as it
keeps packets coming in before the UDP state

expires, no further data is required from behind
the wall

TCP w/ Guerrila Multicast

\Without any listeners, stream dies

\With one listener, stream can operate
normally

, #* \With many listeners, only one should
o participate in acknowledging the stream

If that one dies, another should take its place
Solution: Random delays

On reception of a packet to be acknowledged,

: queue a response within the next 50-1500ms
%; Broadcast response
b If another host broadcasted a response before you

had the chance to, unschedule your response

Recontextualizing L2/L3

One |IP, normally linked to one host, can be
transformed at L2 into all hosts at a given
subnet

This transformation is undetectable outside the
subnet

Other Uses

“All hosts™ could also include “Many hosts” using
true L2 Multicast packets

; Do we have another other situation where one IP
%; _ “stands in” for many hosts?

MAC Address Translation

"NATless NAT”

“Is it possible to share a globally addressable IP
address without translating private IP ranges a la
NAT?”

Is it possible to allow incoming connections to an
IP multiplexed in this manner?

#* Answer: Yes.

Keep the external IP on any and all hosts behind
the gateway

4 Use NAT-style state management
%; Multiplex on Layer 2
R Make ARP Table dynamic, based on each individual
connection

Maintains L3 end-to-end integrity

»+* Managing Local Ports
?ﬁ' # NAT multiplexes several hosts into one IP
% address by splitting on local port
Already munging IP, might as well munge ports
too

Some implementations make best efforts to match
local port inside the network w/ local port outside

Birthday Paradox: Collision chance =1/
sgrt(range_of local ports) = 1/256

#* |f we can always match IP and Port, then we
14 can always maintain end-to-end correctness

a Only have a problem 1/256 connections to the
) same host

Alternate strategies exist — munge the SEQ#(problems
w/ Window overlap), use TCP Timestamps

' & The “Anyone Order A Pizza”
'+ * Protocol

.
Ly # Stateless approach: Ask everybody,
drop RSTs, forward everything else.

Just broadcast to the IP

Actually works behind NATSs, but you need
to catalog all the local Ips

Breaks down badly when two people are
listening on the same port

Can split port range(1022, 2022, 3022, etc. all
%; being different instances of 22/ssh)

Incoming State

@I # Stateful Approach (“you ordered the last
%ﬂ 3 one ’)
Ask everyone, but remember who’s hosting
Send to the first host that replies

Increment the timer every time a packet is emitted
from the serving host for that port

If no packets are emitted after a certain amount of
time, allow open registration once more

= "It's amazing what you can do once security
i is not an issue.”

TCP Splicing

?ﬁ # NAT Deadlock Resolution

“Is it possible to establish a TCP connection
between two hosts, both behind NATs?”

Answer: Yes...but it ain’t pretty.

Convince each firewall that the other accepted-the
connection, using a connection broker to
coordinate port selection and tunnel/spoof
SYN|ACKs

Layers will need to be played against eachother to
prevent certain otherwise desirable messaging behaviors

%; from going too far

Q'
* An Analogy

?E ::'.'.Jﬁ

W
ﬁ pai
'&

XN
"
e
]

%ﬁ,

#* Bill Gates 'n Larry Ellison

Why? They can call anyone they want —
their secretaries won't stop ‘em.

e None of us can call them — their
secretaries will stop us.

If Bill or Larry did call us, they'd actually be
able to hear us reply.

i | Asymmetry is in the initiation

=

Q'
. P

J-.Jﬁl

Setting Up

» Alice and Bob both behind NATting
O EVELS

Firewalls authorize all outgoing sessions;
block all iIncoming sessions
Block w/ state — no faking

Only accept fully validated responses to
outgoing messages

o Ports must match

o SEQ#’s must match

%; j Total outgoing trust, zero incoming trust

=
;':_:.-.;' " “mw ﬁ

The Attempt

#* Alice tries to send a message to Bob

SYN hits Alice’s firewall, is given global IP + entry
In state table “connection attempted”

SYN travels across Internet
SYN hits Bob’s firewall, RST|ACK sent

RST|ACK hits Alice’s firewall, entry in state table
torn down, RST|ACK readdressed to Alice

Alice gets nowhere
i % Bob does the same thing

Analysis

#* Good
Entry in firewall state table, awaiting a reply

Bad

_ Negative reply, entry in state table
F destroyed

Can we get the former without the
latter?

Doomed TTLS

@I # Packet first hits local firewall, gets NAT entry,
travels across Internet, hits remote firewall,
elicits the rejection.
Good at the beginning of life, bad at end of life

}% So shorten the packet’s lifespan and it never goes
bad.

TTL: Time To Live

Maximum number of hops packet is allowed to
travel along the network before being dropped

%; Used by IP to prevent routing loops

Used by us to prevent state table from closing/the
hole

Q'
5?‘“

5 :Z-.'.Jﬁl

New Paradigm

£ e
_ #* Now able to add Host/Port/SEQ#
= combinations to firewall packet

acceptance rules

-4 _arry Ellison: “Bill Gates is going to call
nere in the next two minutes, please put
nis call through.”

Need to generate packets, though

Packets, Ports, Problems

Three way handshake — SYN, SYN|ACK,
ACK

Outgoing connections have SYNs and ACKs but
no SYN|ACKs

#* Ports

Need to agree on which ports are linking up

Need to discover firewall multiplexing rules
#* Timing

Need to know when to attempt connection
Solution to all three: Handshake Only

Connection Broker
Involved only in setting up connection

Local Port Strategies

Some firewalls do best effort to match
Some Increment from a fixed counter

Some use random local ports

- Entropy cannot be differentiated — rule
from kleptography

As long as it's translated back...
Need to discover what strategy Is being

% used

Sequence

Alice and Bob SYN Charlie 2x

Charlie NFO Alice and Bob

Alice and Bob SYN Charlie

Alice and Bob DoomSYN Bob and Alice
Alice and Bob SYN Charlie

Charlie SYN|ACK Alice and Bob
Throw details about port selection in IPID

Alice and Bob DoomACK Bob and Alice

% # Alice and Bob begin normal TCP session to
| eachother, as if the other acknowledged
correctly

Tricking Firewalls/IDSs

Alice can forge a connection from an arbitrary
IP by cooperating with Charlie

#* Alice looks like she’s connecting to Yahoo,
but is informing Charlie of the specifics of the
connection attempt

Charlie replies as if he was Yahoo, and
begins a TCP stream of arbitrary data using
standard TCP splicing

Alice continues to doom her
acknowledgments to Yahoo, and Charlie
keeps sending packets as Yahoo.

Conclusion

[nteresting things are possible

All code available for download at
http://www.doxpara.com

