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Abstract. We present Mixminion, a message-based anonymous remailer
protocol that supports secure single-use reply blocks. MIX nodes cannot
distinguish Mixminion forward messages from reply messages, so forward
and reply messages share the same anonymity set. We add directory
servers that allow users to learn public keys and performance statistics
of participating remailers, and we describe nymservers that allow users to
maintain long-term pseudonyms using single-use reply blocks as a prim-
itive. Our design integrates link encryption between remailers to provide
forward anonymity. Mixminion brings together the best solutions from
previous work to create a conservative design that protects against most
known attacks.
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1 Introduction

Chaum first introduced anonymous remailer designs over 20 years ago [9]. The
research community has since introduced many new designs and proofs [1, 5, 19,
21–23, 34, 35], and discovered a variety of new attacks [4, 6, 7, 12, 29, 38], but the
state of deployed remailers has changed remarkably little since Cottrell published
his Mixmaster software [10, 32] in 1994. Part of the difficulty in expanding the
deployed remailer base is due to the liability involved in running a remailer node
on the Internet, and part is due to the complexity of the current infrastructure
— it is fairly hard to add new experimental features to the current software.

The Mixminion Project aims to deploy a cleaner remailer design in the same
spirit as Mixmaster, with the goals of expanding deployment, documenting our
design decisions and how well they stand up to all known attacks, and providing a
research base for experimental features. We describe our overall design in Section
3, including a new primitive called a single-use reply block (SURB). Mixmaster
provides no support for replies, but instead relies on the older and less secure
Cypherpunk Type I remailer design [26]. By integrating reply capabilities into
Mixminion, we can finally retire the Type I remailer network.

We introduce link encryption with ephemeral keys to ensure forward anonym-
ity for each message. We also provide flexible delivery schemes — rather than



just allowing delivery to mail or Usenet, we allow designers to add arbitrary mod-
ules to handle incoming and outgoing messages. By separating the core mixing
architecture from these higher-level modules, we can both limit their influence
on the anonymity properties of the system, and also extend the Mixminion net-
work for uses other than anonymous email. We go on in Section 5 to describe
a design for directory servers to track and distribute remailer availability, per-
formance, and key information, and then describe in Section 6 how to securely
build higher-level systems such as nymservers using SURBs.

Mixminion is a best-of-breed remailer protocol that uses conservative design
approaches to provide security against most known attacks. The overall Mixmin-
ion Project is a joint effort between cryptography and anonymity researchers and
Mixmaster remailer operators. This design document represents the first step in
peer review of the Type III remailer protocol.

2 Related Work

2.1 MIX-nets

Chaum introduced the concept of a MIX-net for anonymous communications [9].
A MIX-net consists of a group of servers, called MIXes (or MIX nodes), each of
which is associated with a public key. Each MIX receives encrypted messages,
which are then decrypted, batched, reordered, and forwarded on without any
information identifying the sender. Chaum also proved the security of MIXes
against a passive adversary who can eavesdrop on all communications between
MIXes but is unable to observe the reordering inside each MIX.

Recent research on MIX-nets includes stop-and-go MIX-nets [23], distributed
flash MIXes [21] and their weaknesses [12, 29], and hybrid MIXes [35].

One type of MIX hierarchy is a cascade. In a cascade network, users choose
from a set of fixed paths through the MIX-net. Cascades can provide greater
anonymity against a large adversary: free-route systems allow an adversary who
owns many MIXes to use intersection attacks to reduce the set of possible senders
or receivers for a given message [7]. On the other hand, cascades are more vulner-
able [3] to trickle attacks, where an attacker targeting a specific message going
into a MIX can manipulate the batch of messages entering that MIX so the
only unknown message in the batch is the target message [10, 19]. MIX cascade
research includes real-time MIXes [22] and web MIXes [5].

2.2 Deployed Remailer Systems

The first widespread public implementations of MIXes were produced by the
Cypherpunks mailing list. These “Type I” anonymous remailers were inspired
both by the problems surrounding the anon.penet.fi service [20], and by theo-
retical work on MIXes. Hughes wrote the first Cypherpunk anonymous remailer
[26]; Finney followed closely with a collection of scripts that used Phil Zimmer-
mann’s PGP to encrypt and decrypt remailed messages. Later, Cottrell imple-
mented the Mixmaster system [17, 32], or “Type II” remailers, which added mes-
sage padding, message pools, and other MIX features lacking in the Cypherpunk
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remailers. Note that Mixmaster does not include replies, so deployed remailer
systems still use the less secure long-term Cypherpunk reply blocks.

At about the same time, Gulcu and Tsudik introduced the Babel system
[19], a practical remailer design with many desirable features. While it pro-
vides replies, they are only indistinguishable from forward messages by pas-
sive observers; the MIX nodes can still distinguish. Babel’s reply addresses are
multiple-use, making them less secure than forward messages due to replay vul-
nerabilities. Babel also introduces inter-MIX detours, where nodes can rewrap
a message and send it through a few randomly chosen new hops — so even the
sender cannot be sure of recognizing his message as it leaves the MIX.

2.3 Remailer Statistics

Levien’s statistics pages [27] track both remailer capabilities (such as what kinds
of encryption the remailer supports) and remailer up-times (obtained by pinging
the machines in question and by sending test messages through each machine or
group of machines). Such reputation systems improve the reliability of MIX-nets
by allowing users to avoid choosing unreliable MIXes. The Jack B Nymble 2 re-
mailer client [39] and the Mixmaster 2.9 remailer allow users to import statistics
files and can then pick remailers according to that data. Users can specify min-
imum reliability scores, decide that a remailer should always or never be used,
and specify maximum latency. Ongoing research on more powerful reputation
systems includes a reputation system for free-route networks [14] and another
for MIX cascades [16].

3 The MIX-net Design

Mixminion brings together the current best approaches for providing anonymity
in a batching message-based MIX environment. We don’t aim to provide low-
latency connection-oriented services like Freedom [40] or Onion Routing [18]
— while those designs are more effective for common activities like anonymous
web browsing, the low latency necessarily implies smaller anonymity sets than
for slower message-based services. Indeed, we intentionally restrict the set of
options for users: we provide only one cipher suite, and we avoid extensions that
would help an adversary divide the anonymity set.

Mixminion uses the same general MIX-net paradigm as previous work [9,
10, 19]. The sender Alice chooses a path through the network. She repeatedly
“onion” encrypts her message, starting with the last MIX in her path, and sends
the onion to the first MIX. Each MIX unwraps a single layer of the onion, pads
the message to a fixed length (32 Kbytes in our current design), and passes the
result to the next MIX. We describe the behavior of the last MIX in Section 4.2.

Headers addressed to each intermediate MIX are encrypted using RSA. They
contain a secret that can be used to generate padding and decrypt the rest of the
message. They also contain the address of the next node to which the message
should be forwarded along with its expected signature key fingerprint.
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While Mixminion protects against known traffic analysis attacks (where an
adversary attempts to learn a given message’s sender or receiver [37, 38]), we do
not fully address traffic confirmation attacks. In a traffic confirmation attack,
the adversary treats the MIX network as a black box and observes the behavior
of senders and receivers. Over time, he can intersect the set of senders and
receivers who are active at certain times and learn who is sending and receiving
which messages [6]. Good dummy traffic designs may eventually address the
intersection attack, but for now it remains an open problem.

We choose to drop packet-level compatibility with Mixmaster and the Cypher-
punk remailer systems, in order to provide a simple extensible design. We can
retain minimal backwards compatibility by “remixing” Type II messages to be
Type III messages, thus increasing anonymity sets in the Type III network. Type
II messages travelling between Type III remailers are treated as plaintext and
encrypted to the next remailer in the chain using its Type III key. The message
is sent as a Type III encrypted message, but it decrypts to reveal the Type II
message.

We also provide a new feature: a reply block mechanism that is as secure
as forward messages. Reusable reply blocks, such as those in the Cypherpunk
remailer, are a security risk — by their very nature they let people send multiple
messages through them. These multiple messages can easily be used to trace the
recipient’s path: if two incoming batches both include a message to the same
reply block, then the next hop must be in the intersection of both outgoing
batches. To prevent these replays, Mixminion therefore provides only single-
use reply blocks. Since replies may be very rare relative to forward messages,
and thus much easier to trace, the Mixminion protocol makes reply messages
indistinguishable from forward messages even for the MIX nodes. Thus forward
and reply messages can share the same anonymity set.

3.1 Tagging attacks

To motivate some aspects of the Mixminion design, we describe an attack that
works against many MIX-net protocols, including Mixmaster and Babel.

A tagging attack is an active attack in which a message is modified by altering
part of it (for example by flipping bits), so that it can be recognized later in the
path. A later MIX controlled by the attacker can recognize tagged messages
because the header does not conform to the expected format when decrypted.
Also, the final recipient can recognize a tagged message for which the payload
has been altered.

Checking the integrity of hop headers individually is not sufficient to prevent
tagging attacks. For example, in Mixmaster each hop header contains a hash of
the other fields in that header [32]. Each MIX in the path checks the integrity of
the header, and drops the message immediately if it has been altered. However,
an attacking MIX can still alter a header that will be decrypted only after several
more hops, and so tagging attacks are still possible.

The most straightforward way to prevent tagging attacks is to authenticate
the whole message at every hop. For forward messages, then, the padding added
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to a message must be derived deterministically, so that it is possible to calculate
authentication tags for the whole message at each hop. But the situation becomes
more complicated when reply messages are introduced — the message and the
reply block are created by different users.

3.2 Replies

The rest of this section describes the mechanism for secure replies, including how
we defeat tagging-related attacks. Mixminion’s reply model is in part inspired
by Babel [19], as it requires the receiver of a reply block to keep no other state
than its secret keys, in order to read the reply. All the secrets used to strip the
layers of encryption are derived from a master secret contained in the last header
of the single-use reply block, which the creator of the block addresses to itself
and encrypts under its own public key.

3.3 Indistinguishable replies

By making forward messages and replies indistinguishable even to MIXes, we
prevent an adversary from dividing the message anonymity sets into two classes.
In particular, if replies are infrequent relative to forward messages, an adversary
who controls some of the MIXes can more easily trace the path of each reply.

Having indistinguishable replies, however, makes it more difficult to prevent
tagging attacks. Since the author of a reply block is not the one writing the
payload, a hash of the entire message cannot be used. Therefore, since we choose
to make forward messages and replies indistinguishable, we cannot include hashes
for forward messages either. Our approach to defending against these attacks is
discussed in more detail in Section 3.4.

Mixminion allows Alice to send messages to Bob in one of three ways:

1. Forward messages where only Alice remains anonymous.
2. Direct Reply messages where only Bob remains anonymous.
3. Anonymized Reply messages where Alice and Bob remain anonymous.

We require parties that benefit from anonymity properties to run dedicated
software. Specifically, senders generating forward messages must be able to cre-
ate onions, and anonymous receivers must be able to create reply blocks and
unwrap messages received through those reply blocks. Other parties, such as
those receiving forward messages and those sending direct reply messages, do
not need to run new software. (The quoting performed by ordinary mail soft-
ware can be used to include the reply block in a direct reply; this is sent to a
node at the Reply-To: address, which extracts the reply block and constructs a
properly formatted onion.)

Messages are composed of a header section and a payload. We divide a mes-
sage’s path into two legs, and split the header section correspondingly into a
main header and a secondary header. Each header is composed of up to 16 sub-
headers, one for each hop along the path. Each subheader contains a hash of the
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remainder of its header as seen by the appropriate MIX, so we can do integrity-
checking of the path (but not the payload) within each leg. Each subheader also
contains a symmetric key, which is used to derive a decryption key for decrypting
the rest of the message. The MIX also derives a padding seed from this master
key. It uses this padding seed to place predictable padding at the end of the
header, so the hash will match even though each hop must regrow the header to
maintain constant length.

For forward messages, Alice provides both legs; for anonymous replies, Alice
uses Bob’s reply block as the second leg, and generates her own path for the first
leg. To send a direct reply, Alice can use an empty first leg, or send the reply
block and message to a MIX that can wrap them for her.

When Alice creates her message, she encrypts the secondary header with a
hash of her payload (in addition to the usual layered onion encryptions). Alice’s
message then traverses the MIX-net as normal (every hop pulls off a layer, verifies
the hash of the current header, and puts some junk at the end of the header),
until it gets to a hop that is marked as a crossover point. This crossover point
performs a “swap” operation: it decrypts the secondary header with the hash
of the current payload, and then swaps the two headers. The swap operation is
detailed in Figure 1 — specifically, the normal operations done at every hop are
those above the dotted line, and the operations performed only by the crossover
point are those below the dotted line. The encryption primitive, labelled “LBC”,
that is used to blind the second header and the payload needs to have certain
properties:

– it is length-preserving;
– it should be impossible to recognize the decryption of a modified block,

without knowledge of the key;
– it should be equally secure to use the decryption operation for encryption.

To fulfill the above requirements we use a large-block cipher; that is, a cipher
that acts as a permutation on a block the size of its input (a header or the pay-
load). Possible candidates include LIONESS [2] and SPC [8]. The cryptographic
property required is that of a super-pseudo-random permutation (a.k.a. strong
pseudo-random permutation) or SPRP [24].1 Thus if any bit of the encrypted
material is changed, the decryption will look like random bits. An SPRP is also
equally secure in the encryption and decryption directions. See Section 3.4 for a
discussion of how this approach helps protect against tagging.

3.4 Defenses against tagging attacks

Without the crossover point, an adversary could mount a tagging attack by
modifying the payload of a forward message as it leaves Alice, and recognizing
it later when it reaches Bob. Specifically, if our encryption mechanism were an
1 The weaker PRP property may be sufficient, given that preventing replays limits

the number of oracle queries to 1; this will need further analysis. In that case the
simpler BEAR construction [2] could be used instead of LIONESS.
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Fig. 1. The operations required by the “swap” method

ordinary counter-mode cipher, he might alter a specific byte in the payload of
a message entering the MIX-net. Since many of the outgoing messages will be
in part predictable (either entirely plaintext, or with predictable PGP header
material), the adversary can later observe messages exiting the MIX-net and
look for payloads that have a corresponding anomaly at that byte.

We use a large-block cipher as described in the previous section to minimize
the amount of information an adversary can learn from tagging. If he tags a
message leaving Alice, the payload will be entirely random when it reaches Bob.
Thus, an adversary who tags a message can at worst turn the corresponding
payload into trash.

We briefly considered introducing cover-trash to frustrate these tagging at-
tacks; but that problem is as complex as the dummy traffic problem [6]. Instead,
we use the decryption-by-hash-of-payload step at the crossover point to prevent
the attacker from learning information from tagging attacks. Specifically, our
solution falls into several cases:

– Forward messages: if the message is tagged during the first leg, the second
header is unrecoverable, and so the adversary cannot learn the intended
destination of the message. If the message is tagged during the second leg,
then the first leg has already provided anonymity, and so the adversary
cannot learn the sender.

– Direct reply messages: since the decryption algorithm provides secrecy equiv-
alent to encryption, the effect is similar to encrypting the payload at each
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step along a reply block. Only the recipient can learn, after peeling off all lay-
ers, whether the message has been tagged. Thus tagging attacks are useless
against reply messages.

– Anonymized reply messages: as with forward messages, if the first leg is
tagged the second header is unrecoverable — so an adversary will never
learn that the message was addressed to a reply block. And as with direct
reply messages, only the recipient can learn if the second leg is tagged.

While direct reply messages do not need a crossover point in the path (the
adversary can never observe his tag), forward messages still need a crossover
point to prevent end-to-end tagging. But since the first leg either provides suf-
ficient anonymity or destroys the information about the second leg, the second
leg in a forward message can be very short. At the extreme, the first hop in the
second header could directly specify the message recipient. However, the choice
of crossover point can still reveal information about the intended recipient,2 and
so we recommend that the second leg be at least a few hops long.

No MIX except the crossover point can distinguish forward messages from
replies — even the crossover point cannot be sure whether it is processing a
reply or forward message, but it may be able to guess that crossover points are
more frequent on forward paths than direct replies or anonymized reply paths.

3.5 Multiple-message tagging attacks

The above design is still vulnerable to a subtle and dangerous attack. If Alice
sends a group of messages along the same path, the adversary can tag some of
those message as they leave Alice, recognize the pattern (number and timing of
tagged and untagged messages) at the crossover point, and observe where the
untagged ones go. With some assumptions about our adversary, we can reduce
this attack to a traffic confirmation attack we’re already willing to accept: when
Alice sends a bunch of messages, the adversary can count them and look for the
pattern later. He can also drop some of them and look for resulting patterns.

The adversary can only recognize a tag if he happens to own the crossover
point that Alice chooses. Therefore, Alice picks k crossover points for her mes-
sages;3 to match a tag signature with certainty an adversary would have to own
all k crossover points. (And even then, it seems harder as the subsets of her
messages would overlap with subsets of messages from other senders.)

The key here is that when the adversary doesn’t own a given crossover point,
tagging messages destined for that crossover is equivalent to dropping them. The
crossover point in question simply doesn’t deliver the message to the second leg.
2 For instance, some MIXes may only allow outgoing mail to local addresses; if such a

node gets a crossover message that has been trashed, it might guess that the recipient
is one of the local addresses.

3 We can prevent the adversary from using divide-and-conquer on Alice’s groupings
if Alice uses a hybrid path starting with a short cascade — so even if the adversary
tags a subset of the messages he doesn’t know (unless he owns the whole cascade)
the groupings of tagged messages.
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Therefore, if the adversary doesn’t own most of the crossover points that Alice
chooses, a successful multiple-message tagging attack seems infeasible. We leave
a security analysis of the multiple-paths idea to future work; but see Section 7.

4 Related design decisions

4.1 Link encryption and what it gets us

Unlike remailer Types I and II that used SMTP [36] (i.e. ordinary Internet e-
mail) as their underlying transport mechanism, Mixminion clients and nodes
communicate using a forward secure encrypted channel based on TLS [13]. TLS
allows the establishment of an encrypted tunnel using ephemeral Diffie-Hellman
keys. In order to guarantee that the receiving end is the one intended by the
creator of the anonymous message, the receiving node can sign the ephemeral
key. As soon as a session key has been established, the parties destroy their
Diffie-Hellman keys and begin sending messages through the tunnel. After each
message, the parties perform a standard key update operation to generate a fresh
key, and delete the old key material. Key updates don’t require any asymmetric
encryption techniques, so they are relatively fast.

The purpose of link encryption is to provide forward secrecy: after the keys
have been deleted, not even the nodes that exchange messages can decrypt or
recognize messages that might have been intercepted on the links. This makes it
impossible to comply with decryption notices of past traffic that might be served
in some jurisdictions. Even if an attacker manages to get hold of the session key
at a particular point they would have to observe all subsequent traffic to be able
to update their key appropriately.

The encrypted channel offers only limited protection against traffic analysis.
Encrypted links between honest nodes prevent an adversary from recognizing
even his own messages; but without link padding, he can still measure how
much traffic is being transmitted.

As a fringe benefit, using a separate link protocol makes it easier to deploy
relay-only MIXes — such nodes simply omit SMTP support. (See Section 4.2
below.)

4.2 Message types and delivery modules

Once a Mixminion packet reaches the final MIX in its path, it must either be
delivered to its intended recipient, dropped if it is an intra-network dummy
message, or processed further if it is a remixed Type II packet. In order to support
different kinds of delivery, the header includes a type code for the action to be
taken to deliver the message. A few types — such as ‘dummy’, ‘SMTP’, and
‘local delivery’ — are specified as a part of the Mixminion standard. Others may
be added by future extensions, to implement abuse-resistant exit policies (see
Section 4.3), to administer nymservers (see Section 6), to publish anonymously
to Usenet, to relay messages to older remailers, or to support other protocols.
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Nearly all delivery methods require additional information beyond the mes-
sage type and its payload. The SMTP module, for example, requires a mailbox.4

This information is placed in a variable-length annex to the final subheader.
The types each MIX supports are described in a capability block, which also

includes the MIX’s address, long-term (signing) public key, short-term public
key (for use in header encryption), remixing capability, and batching strategy.
MIXes sign these capability blocks and publish them on directory servers (see
Section 5). Clients download this information from the directory servers.

The possibility of multiple delivery methods doesn’t come free: their presence
may fragment the anonymity set. For example, if there were five ways to send
an SMTP message to Bob, an attacker could partition Bob’s incoming mail by
guessing that one of those ways is Alice’s favorite. An active attacker could
even lure users into using a compromised exit node by advertising that node as
supporting a rare but desirable delivery method.

We claim that these attacks do not provide an argument against extensibility
per se, but rather argue against the proliferation of redundant extensions, and
against the use of rare extensions.

4.3 Exit policies and abuse

One important entry in a node’s capability block is its exit policy. Exit abuse is
a serious barrier to wide-scale remailer deployment — rare indeed is the network
administrator tolerant of machines that potentially deliver hate mail.

On one end of the spectrum are open exit nodes that will deliver anywhere;
on the other end are middleman nodes that only relay traffic to other remailer
nodes and private exit nodes that only deliver locally. More generally, nodes can
set individual exit policies to declare which traffic they will let exit from them,
such as traffic for local users or other authenticated traffic [41].

Preventing abuse of open exit nodes is an unsolved problem. If receiving mail
is opt-in, an abuser can forge an opt-in request from his victim. Indeed, requiring
recipients to declare their interest in receiving anonymous mail is risky — human
rights activists in Guatemala cannot both sign up to receive anonymous mail and
also retain plausible deniability.5 Similarly, if receiving mail is opt-out, an abuser
can deny service by forging an opt-out request from a legitimate user. We might
instead keep the mail at the exit node and send a note to the recipient telling
them how to collect their mail; but this increases server liability by storing
messages (see Section 6 below), and also doesn’t really solve the problem.
4 A mailbox is the canonical form of the “user@domain” part of an e-mail address.

Mixminion uses only mailboxes in the protocol, because the display name and com-
ment parts of an e-mail address could potentially be different for senders who have
obtained an address from different sources, leading to smaller anonymity sets.

5 Compare with the 1965 U.S. Supreme Court case Lamont v. Postmaster General
(381 U.S. 301), where the Post Office would detain mail it deemed to be ‘communist
political propaganda’ and instead send a form to the addressee telling him to send
back the signed form if he wanted to receive such mail. The government maintained
a list of citizens who had filled out these forms.
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Of course, a mixture of open and restricted exit nodes will allow the most
flexibility for volunteers running servers. But while a large number of middleman
nodes is useful to provide a large and robust network, the small number of
exit nodes still simplifies traffic confirmation (the adversary observes both a
suspected user and the network’s exit nodes and looks for timing or packet
correlations). The number of available open exit nodes remains a limiting security
parameter for the remailer network.

4.4 Replay prevention, message expiration, and key rotation

Mixmaster offers rudimentary replay prevention by keeping a list of recent mes-
sage IDs. To keep the list from getting too large, it expires entries after a server-
configurable amount of time. But if an adversary records the input and output
batches of a MIX and then replays a message after the MIX has forgotten about
it, the message’s decryption will be exactly the same. Thus, Mixmaster does not
provide the forward anonymity that we want.

Chaum first observed this attack in [9], but his solution (which is proposed
again in Babel6) — to include in each message a timestamp that describes when
that message is valid — also has problems. Specifically, it introduces a new class
of partitioning attacks, where the adversary can distinguish and track messages
based on timestamps. If messages have short lifetimes, legitimate messages may
arrive after their expiration date and be dropped. But if we specify expiration
dates well after when we expect messages to arrive, messages arriving near their
expiration date will be rare: an adversary can delay a message until near its
expiration date, then release it and trace it through the network.

One way of addressing this partitioning attack is to add dummy traffic so
that it is less rare for messages to arrive near their expiration date; but dummy
traffic is still not well-understood. Another approach would be to add random
values to the expiration date of each MIX in the path, so an adversary delaying
a message at one MIX cannot expect that it is now near to expiring elsewhere
in the path; but this seems open to statistical attacks.

A possible compromise solution that still provides forward anonymity is as
follows: Messages don’t contain any timestamp or expiration information. Each
MIX must keep hashes of the headers of all messages it has processed since the
last time it rotated its key. MIXes should choose key rotation frequency based
on security goals and on how many hashes they want to store.

Note that this solution does not entirely solve the partitioning problem —
near the time of a key rotation, the anonymity set of messages will be divided
into those senders who knew about the key rotation and used the new key, and
those who did not. Moreover, if keys overlap, the above delaying attack still
6 Actually, Babel is vulnerable to a much more direct timestamp attack: each layer of

the onion includes “the number of seconds elapsed since January 1, 1970 GMT, to
the moment of message composition by the sender.” Few people will be composing
a message on a given second, so an adversary owning a MIX at the beginning of the
path and another at the end could trivially recognize a message.
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works. Also note that while key rotation and link encryption (see Section 4.1)
both provide forward security, their protection is not redundant. With only link
encryption, an adversary running one MIX could compromise another and use
its private key to decrypt messages previously sent between them. Key rotation
limits the window of opportunity for this attack.

A more complete solution to partitioning attacks may be possible by using
the “synchronous batching” approach described in Section 7.2; this is a subject
for future research.

5 Directory Servers

The Mixmaster protocol does not specify a means for clients to learn the lo-
cations, keys, capabilities, or performance statistics of MIXes. Several ad hoc
schemes have grown to fill that void [27]; here we describe Mixminion directory
servers and examine the anonymity risks of such information services.

In Mixminion, a group of redundant directory servers serve current node
state. It is important that these servers be synchronized and redundant: we lose
security if each client has different information about network topology and node
reliability. An adversary who controls a directory server can track certain clients
by providing different information — perhaps by listing only MIXes it controls
or only informing certain clients about a given MIX.

An adversary without control of a directory server can still exploit differences
among client knowledge. If Eve knows that MIX M is listed on server D1 but not
on D2, she can use this knowledge to link traffic through M to clients who have
queried D1. Eve can also distinguish traffic based on any differences between
clients who use directory servers and those who don’t; between clients with up-
to-date listings and those with old listings; and (if the directory is large and so is
given out in pieces) between clients who have different subsets of the directory.

So it is not merely a matter of convenience for clients to retrieve up-to-date
MIX information. We must specify a directory service as a part of our standard.
Thus Mixminion provides protocols for MIXes to advertise their capability cer-
tificates to directory servers, and for clients to download complete directories.7

Servers can work together to ensure correct and complete data by successively
signing certificate bundles, so users can be sure that a given MIX certificate has
been seen by a threshold of directory servers.

But even if client knowledge is uniform, an attacker can mount a trickle attack
by delaying messages from Alice at a compromised node until the directory
servers remove some MIX M from their listings — he can then release the
delayed messages and guess that any messages still using M are likely to be
from Alice. An adversary controlling many nodes can launch this attack very
7 New advances in Private Information Retrieval [25] may down the road allow clients

to efficiently and privately download a subset of the directory. We recommend against
using the MIX-net to anonymously retrieve a random subset: an adversary observing
the directory servers and given two hops in a message’s path can take the intersection
over recently downloaded directory subsets to guess the remaining hops in the path.
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effectively. Thus clients should download new information regularly, but wait for
a given time threshold (say, an hour) before using any newly-published nodes.
Dummy traffic to old nodes may also help thwart trickle attacks.

Directory servers compile node availability and performance information by
sending traffic through MIXes in their directories. In its basic form this can be
very similar to the current ping servers [27], but in the future we can investigate
integrating more complex and attack-resistant reputation metrics. Even this rep-
utation information introduces vulnerabilities: for example, an adversary trying
to do traffic analysis can get more traffic by gaining a high reputation [14]. We
can defend against these attacks by building paths from a suitably large pool of
nodes [16] to bound the probability that an adversary will control an entire path;
but there will always be a tension between giving clients accurate and timely
information and preventing adversaries from exploiting the directory servers to
manipulate client behavior.

6 Nym management and single-use reply blocks

Current nymservers, such as nym.alias.net [28], maintain a set of (mailbox,
reply block) pairs to allow users to receive mail without revealing their identi-
ties. When mail arrives to <bob@nym.alias.net>, the nymserver attaches the
payload to the associated reply block and sends it off into the MIX-net. Because
these nymservers use the Type I remailer network, these reply blocks are persis-
tent or long-lived nyms — the MIX network does not drop replayed messages, so
the reply blocks can be used again and again. Reply block management is much
simpler in this model because users only need to replace a reply block when one
of the nodes it uses stops working.

The Mixminion design protects against replay attacks by dropping messages
with repeated headers — so its reply blocks are necessarily single-use. There are
a number of approaches for building nymservers from single-use reply blocks.

In the first approach, nymservers keep a stock of reply blocks for each mail-
box, and use a reply block for each incoming message. As long as the owner of
the pseudonym keeps the nymserver well-stocked, no messages will be lost. But
it is hard for the user to know how many new reply blocks to send; indeed, under
this approach, an attacker can deny service by flooding the mailbox to exhaust
the available reply blocks and block further messages from getting delivered.

A more robust design uses a protocol inspired by e-mail retrieval protocols
such as IMAP [11] or POP [33]: messages arrive and queue at the nymserver,
and the user periodically checks the status of his mail and sends a sufficient
batch of reply blocks so the nymserver can deliver that mail. In this case, the
nymserver doesn’t need to store any reply blocks. The above flooding attack still
works, but now it is exactly like flooding a normal IMAP or POP mailbox, and
the usual techniques (such as allowing the user to delete mails at the server or
specify which mails to download and let the others expire) work fine. The user
can send a set of indices to the server after successfully receiving some messages,
to indicate that they can now be deleted.
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Of course, there are different legal and security implications for the two de-
signs. In the first design, no mail is stored on the server, but it must keep valid
reply blocks on hand. The second case is in some sense more secure because the
server need not store any reply blocks, but it also creates more liability because
the server keeps mail for each recipient until it is retrieved. The owner of the
pseudonym could provide a public key that the nymserver uses to immediately
encrypt all incoming messages, to limit the amount of time the nymserver keeps
plaintext messages.

The best implementation depends on the situations and preferences of the
volunteers running the nymservers. Hopefully there will be enough volunteers
that users can choose the model that makes them most comfortable.

7 Maintaining anonymity sets

7.1 Transmitting large files with Mixminion

We would like to use Mixminion as a transport layer for higher-level applications
such as anonymous publication systems [15], but much research remains before
we can provide security for users transferring large files over Mixminion.

Alice wants to send a large file to Bob; thus she must send many Mixminion
messages. Conventional wisdom suggests that she should pick a different path
for every message, but an adversary that owns all the nodes in any of the paths
could learn her identity — without any work at all. (Even an adversary owning a
very small fraction of the network can perform this attack, since the Mixminion
message size is small.)

Alice seems more likely to maintain her unlinkability by sending all the mes-
sages over the same path. On the other hand, a passive adversary can still watch
the flood of messages traverse that path. We must hope the honest nodes will
hide message streams enough to foil these attacks. The multiple-message tagging
attacks described in Section 3.5 make the situation even more dangerous.

A compromise approach is to pick a small number of paths and use them
together. Still, if the messages are sent all at once, it seems clear we’re going
to need some really good cover traffic schemes before we can offer security. The
same problem, of maintaining anonymity when sending many messages, comes
up when the owner of a pseudonym is downloading his mail from a nymserver.

7.2 Batching Strategy and Network Structure

A MIX-net design groups messages into batches and chooses paths; the ap-
proaches it uses affect the degree of anonymity it can provide [3]. We might
define ideal anonymity for a MIX-net to be when an attacker can gain no infor-
mation about the linkage between messages entering and leaving the network,
other than that the maximum time between them is equal to the maximum
network latency.

This ideal is not achieved by protocols like Mixmaster that use random delays:
if the maximum latency of such a network is t, then the anonymity set of a
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message leaving the network may be much smaller than all messages that entered
over a time t. Also, because Mixmaster is both asynchronous (messages can enter
and leave the network at any time) and uses free routes, it is subject to the
attacks described in [7]. We would like to explore a strategy called synchronous
batching. This approach seems to prevent these attacks even when free routes
are used, and seems to improve the trade-off between latency and anonymity.

The network has a fixed batch period, tbatch, which is closely related to the
maximum desired latency; a typical value could be 3–6 hours. Messages entering
the network in each batch period are queued until the beginning of the next
period. They are then sent through the MIX-net synchronously, at a rate of one
hop per hop period. All paths are a fixed length ` hops, so that if no messages are
dropped, the messages introduced in a given batch will progress through their
routes in lock-step, and will all be transmitted to their final destinations ` hop
periods later. Each subheader of a message specifies the hop period in which it
must be received, so that it cannot be delayed by an attacker (which would be
fatal for this design).

The latency is between `thop and tbatch + `thop, depending on when the mes-
sage is submitted. Typically we would have thop < tbatch/`, so the latency is at
most 2tbatch independent of the path length `.

In practice, several considerations have to be balanced when choosing a batch-
ing strategy and network structure. These include maximizing anonymity sets
(both batch sizes through each node and the overall anonymity sets of users);
bandwidth considerations; reliability; enabling users to choose nodes that they
trust; and interactions with the reputation system.

Further analysis is needed before we can choose a final network structure.
Note that a planned structure, where each user’s software follows the plan con-
sistently when constructing routes, will generally be able to achieve stronger and
more easily analyzed security properties than less constrained approaches.

8 Future Directions

This design document represents the first step in peer review of the Type III
remailer protocol. Many of the ideas, ranging from the core design to peripheral
design choices, need more attention:

– We need more research on batching strategies that resist trickle and flooding
attacks [3] as well as intersection attacks on asynchronous free routes [7].

– We need a more thorough investigation of multiple-message tagging attacks,
and an analysis of how to safely choose paths when sending many messages.

– We claim that we use conservative techniques, but an all-or-nothing variable-
length block cipher is pushing it. Can we keep indistinguishable forward
messages and replies using a simpler design?

– We need stronger intuition about how to use dummy messages.

We invite interested developers to join the mixminion-dev mailing list [30]
and examine the more detailed Mixminion specification [31].
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