
Xprobe

Remote ICMP Based OS Fingerprinting Techniques

Ofir Arkin

Managing Security Architect

© 2 0 0 1 @ S T A K E , I N C .

2

Agenda

 What is Xprobe?

 Xprobe 101

 Examples

 The Static Engine

 The Signature Based Engine

 More Examples

 Known Problems, Detecting Xprobe’s Activity, To Do List

 Questions

© 2 0 0 1 @ S T A K E , I N C .

3

Xprobe Creators

© 2 0 0 1 @ S T A K E , I N C .

4

What is Xprobe?

Written and maintained by Fyodor Yarochkin and Ofir Arkin, Xprobe is an

Active OS fingerprinting tool based on Ofir Arkin’s ICMP Usage In Scanning

Research project (http://www.sys-security.com).

Xprobe is an alternative to some tools which are heavily dependent upon

the usage of the TCP protocol for remote active operating system

fingerprinting.

This is especially true when trying to identify some Microsoft based

operating systems, when TCP is the protocol being used with the

fingerprinting process. Since the TCP implementation with Microsoft

Windows XP & Microsoft Windows 2000 and Microsoft Windows ME, and

with Microsoft Windows NT 4 and Microsoft Windows 98/98SE are so close,

usually when using the TCP protocol with a remote active operating systems

fingerprinting process we are unable to differentiate between these

Microsoft based operating system groups.

…And this is only an example.

http://www.sys-security.com/
http://www.sys-security.com/
http://www.sys-security.com/

© 2 0 0 1 @ S T A K E , I N C .

5

What is Xprobe?

As we will demonstrate the number of datagrams we need to send and

receive in order to remotely fingerprint a targeted machine with Xprobe is

small. Very small.

In fact we can send one datagram and receive one reply and this will help

us identify up to eight different operating systems (or groups of operating

systems).

The maximum amount of packets used to successfully identify an operating
system is maximum of 4 sent, and maximum of 4 received.

…This makes Xprobe very fast as well.

© 2 0 0 1 @ S T A K E , I N C .

6

What is Xprobe?

Xprobe probes can be very stealthy.

Xprobe does not send any malformed datagrams to detect a remote OS

type, unlike the common fingerprinting methods. Xprobe analyzes the

remote OS TCP/IP stack responses for valid packets.

Heaps of such packets appear in an average network on daily basis and

very few IDS systems are tuned to detect such traffic (and those which are,

presumably are very badly configured)*.

Usually when people see the types of datagrams being used by Xprobe,

they will think that what have happened was a simple Host Detection

attempt, while in fact the replying machines were not only detected, but their

underlying operating systems were revealed as well.

In the future Xprobe will be using actual application data with its probes.

This will help in disguising the real intentions of the probes, and make

Xprobe transparent to a lot of IDS systems.

© 2 0 0 1 @ S T A K E , I N C .

7

What is Xprobe?

Xprobe might change the traditional intelligence gathering approach. With

the traditional approach we need to detect the availability of a Host (using a

Host Detection method), find a service it is running (using port scanning),

and than identify the underlying operating system (with a remote active

operating system fingerprinting tool). If the targeted machine is running a

service that is known to be vulnerable it may allow a malicious computer

attacker to execute a remote exploit in order to gain unauthorized access to

the targeted machine.

With Xprobe we combine the host detection stage with the operating system

detection stage. With maximum of four datagrams initiated from the prober’s

machine, we are able to determine if a certain machine is running an

operating system where certain vulnerabilities might be presented.

© 2 0 0 1 @ S T A K E , I N C .

8

What is Xprobe?

For example, a Microsoft Windows 2000 based operating system (and

Microsoft Windows XP) can be identified with four datagrams traversing

over the network in total (two sent and two received).

Considering the amount of default installations of Microsoft Windows 2000

based systems on the Internet (with a vulnerable version of IIS 5.0 up and

running) a malicious computer attacker might try to compromise a targeted

machine with his third packet sent. This is especially true when our target is

a web server (targeting http://www.mysite.com for example).

© 2 0 0 1 @ S T A K E , I N C .

9

 First Introduced at the Black Hat Briefings July 2001 Las – Vegas, USA

(v0.0.1). Current versions are 0.0.2 and 0.1.

 The logic behind the tool is called X.

 Compiles on Linux Kernel 2.0.x, 2.2,x, and 2.4.x series, *BSD, Sun Solaris,

& IRIX.

 The tool is Fast, Efficient, Small, and Simple.

 Xprobe has 2 development trees: 0.0.x for Static decision Tree (limited),

and 0.1.x for Signature Dynamic DB support.

 In the future the static side of Xprobe will be combined from different

static logics (depending on the topology) where a smart dynamic fail-over

mechanism is to lunch one of the logics if the start parameters of the first

logic fails.

 Xprobe version 0.1 works against a signature database. We are looking to

add dynamic solution logic as well.

Xprobe Introduction

© 2 0 0 1 @ S T A K E , I N C .

10

Topology Matters

 Internet

 Local LAN

 Between LAN Segments

© 2 0 0 1 @ S T A K E , I N C .

11

Xprobe License

Copyright (C) 2001 Fyodor Yarochkin, Ofir Arkin.

This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free

Software Foundation; either version 2 of the License, or (at your option) any

later version.

All material for nonprofit, educational use only.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along

with this program; if not, write to the Free Software Foundation, Inc., 59

Temple Place - Suite 330, Boston, MA 02111-1307, USA.

© 2 0 0 1 @ S T A K E , I N C .

12

Xprobe Compilation

tar xvfz xprobe-{release}.tar.gz

cd xprobe-{release}

./configure

(or ./configure --with-libpcap-libraries=/usr/local/lib --

with-libcap-includes=/usr/local/include)

make

make install

© 2 0 0 1 @ S T A K E , I N C .

13

Xprobe Usage

xprobe [options] hostname[/netmask]

-h help

-v be verbose

-i <interface> run on interface

-p <portnum> use <portnum> udp port for udp probe

-o logfile log everything into a logfile

© 2 0 0 1 @ S T A K E , I N C .

14

Example: www.defcon.org

© 2 0 0 1 @ S T A K E , I N C .

15

Example: www.defcon.org

S
e
n
t
D

a
ta

g
ra

m
s

Te
st

s
P
e
rf

o
rm

e
d

© 2 0 0 1 @ S T A K E , I N C .

16

Example: www.defcon.org

10/19-19:31:00.791716 213.8.199.165:32426 -> 216.254.1.254:32132

UDP TTL:250 TOS:0x0 ID:47464 IpLen:20 DgmLen:98 DF

Len: 78

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00

10/19-19:31:01.161716 216.254.1.254 -> 213.8.199.165

ICMP TTL:109 TOS:0x0 ID:4224 IpLen:20 DgmLen:56

Type:3 Code:3 DESTINATION UNREACHABLE: PORT UNREACHABLE

** ORIGINAL DATAGRAM DUMP:

213.8.199.165:32426 -> 216.254.1.254:32132

UDP TTL:232 TOS:0x0 ID:47464 IpLen:20 DgmLen:98

Len: 78

** END OF DUMP

00 00 00 00 45 00 00 62 B9 68 40 00 E8 11 61 77 E..b.h@...aw

D5 08 C7 A5 D8 FE 01 FE 7E AA 7D 84 00 4E 8B 78~.}..N.x

Start Time

© 2 0 0 1 @ S T A K E , I N C .

17

Example: www.defcon.org

10/19-19:31:01.161716 213.8.199.165 -> 216.254.1.254

ICMP TTL:250 TOS:0x6 ID:25934 IpLen:20 DgmLen:68 DF

Type:8 Code:123 ID:10421 Seq:30396 ECHO

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

10/19-19:31:01.531716 216.254.1.254 -> 213.8.199.165

ICMP TTL:109 TOS:0x2 ID:4480 IpLen:20 DgmLen:68 DF

Type:0 Code:0 ID:10421 Seq:30396 ECHO REPLY

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

10/19-19:31:01.531716 213.8.199.165 -> 216.254.1.254

ICMP TTL:250 TOS:0x0 ID:25006 IpLen:20 DgmLen:68

Type:13 Code:0 TIMESTAMP REQUEST

70 FC C6 DD 00 00 00 00 00 00 00 00 00 00 00 00 p...............

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00

10/19-19:31:11.161716 213.8.199.165 -> 216.254.1.254

ICMP TTL:250 TOS:0x0 ID:48938 IpLen:20 DgmLen:48

Type:17 Code:0 ADDRESS REQUEST

00 00 8E 5A 00 00 00 00 00 00 00 00 00 00 00 00 ...Z............

00 00 00 00 00 00 00 00

Finish Time ~380ms [+ 250ms waiting time
for the ICMP Address Mask Reply]

© 2 0 0 1 @ S T A K E , I N C .

18

Example: www.defcon.org

© 2 0 0 1 @ S T A K E , I N C .

19

Example: www.defcon.org

© 2 0 0 1 @ S T A K E , I N C .

20

Example: www.defcon.org

© 2 0 0 1 @ S T A K E , I N C .

21

Why Xprobe? - Pros

 The ICMP protocol hasn't been looked onto from the point of remote OS
fingerprinting. Each 'vendor' implemented it in quite relaxed manner, with
'deviations' which are continuously being reproduced in every release of
TCP/IP stack from certain vendor and at times more reliable to be
reproduced than TCP 'tests'.

 Using some kind of “AI” (or an analysis) for a scanning tool is a lot smarter
than just choking the network with huge amount of packets.

 Small overhead in the Scanning process

 No sudden Denial-of-Service or other „surprises‟ during the scan.

 Fast - Active OS fingerprinting using the ICMP protocol uses small amount
of packets sent and received.

 Stealth - People think they were „pinged‟ were they actually been mapped.

 Accurate - Today we are using tools that are, sometimes, inaccurate and
inconsistent with their results. Version 0.1 makes Xprobe even more
accurate.

 Able to differentiate between any Microsoft Windows based TCP/IP Stack

© 2 0 0 1 @ S T A K E , I N C .

22

Why Xprobe? - Cons

 Limited to the ICMP and UDP protocols only

 Internet usage can be defeated (smart firewall rule base)

 Failover to TCP, or a correlation with TCP needs to be done, in a smart

manner. This will lead to a very accurate Active OS fingerprinting tool

using very small amount of traffic to determine a remote OS.

 The Static Decision Tree is limited in adding new operating systems and

networking devices (the static decision tree is hardcoded into the

binary).

© 2 0 0 1 @ S T A K E , I N C .

23

Xprobe – Inner Working

 Xprobe has 2 development trees: 0.0.x for Static decision Tree (limited in

the number of operating systems and networking devices it supports), and

0.1.x for Signature Dynamic DB support.

 The difference is with the processing of the results from the tests.

– With the 0.0.x dev-tree we have a predefined static decision tree.

Adding operating systems and networking devices is a hard task since

it needs to be hard coded.

– With the 0.x dev-tree we use a signature database support. This means

that in order to add support for an operating system or a networking

device all we need is create an entry in the signature database.

– In a sentence: Version 0.1.x - more accurate, easier and more flexible

way to maintain and update signatures.

 Both development trees use the same Active OS fingerprinting methods

using the ICMP protocol.

© 2 0 0 1 @ S T A K E , I N C .

24

Xprobe - ICMP Error Message Echoing Integrity

Each ICMP error message includes the IP Header and at least the first 8 data

bytes of the datagram that triggered the error (the offending datagram); more

than 8 bytes may be sent according to RFC 1122.

When sending back an ICMP error message, some stack implementations may

alter the offending packet's IP header and the underlying protocol's data, which

is echoed back with the ICMP error message.

If a malicious computer attacker examines the types of alternation(s) that have

been made to the offending packet's IP header and the underlying protocol

data, he may be able to make certain assumptions about the target operating

system.

The only two field values we expect to be changed are the IP time-to-live field

value and the IP header checksum. The IP TTL field value changes because the

field is decreased by one, each time the IP Header is being processed. The IP

header checksum is recalculated each time the IP TTL field value is decreased.

© 2 0 0 1 @ S T A K E , I N C .

25

Xprobe - ICMP Error Message Echoing Integrity

With Xprobe we will take advantage of ICMP Port Unreachable error messages

triggered by UDP datagrams sent to close UDP ports. We will be examining

several IP Header and UDP related field values of the offending packet being

echoed with the ICMP Error message, for some types of alternation(s).

IP Total Length Field - Some operating system IP stacks will add 20 bytes to the

original IP total length field value of the offending packet, with the one echoed

with the IP header of the offending packet in the ICMP Error message. Some

other operating system IP stacks will decrease 20 bytes from the original IP

total length field value of the offending packet, with the one echoed with the IP

header of the offending packet in the ICMP Error message.

…And some other operating system IP stacks will echo correctly this field

value.

IPID - Some operating system IP stacks will not echo the IPID field value

correctly with their ICMP Error messages. They will change the bit order with

the value echoed.

…Other operating system IP stacks will echo correctly this field value

© 2 0 0 1 @ S T A K E , I N C .

26

Xprobe - ICMP Error Message Echoing Integrity

3Bits Flags and Offset Fields - Some operating system IP stacks will not

echo the 3Bits Flags and Offset fields value correctly with their ICMP Error

messages. They will change the bit order with these fields. Other operating

system IP stacks will echo correctly this field value.

IP Header Checksum - Some operating system IP stacks will miscalculate

the IP Header checksum of the offending packet echoed back with the ICMP

error message. Some operating system IP stacks will zero out the IP

Header checksum of the offending packet echoed back with the ICMP error

message. Other operating system IP stacks will echo correctly this field

value.

© 2 0 0 1 @ S T A K E , I N C .

27

Xprobe - ICMP Error Message Echoing Integrity

UDP Header Checksum - Some operating system IP stacks will

miscalculate the UDP Header checksum of the offending packet echoed

back with the ICMP error message. Some operating system IP stacks will

zero out the UDP Header checksum of the offending packet echoed back

with the ICMP error message. Other operating system IP stacks will echo

correctly this field value.

Some operating system stacks will not echo correctly several field values

with the same ICMP Error Message, and not just one. This will enable us to

use multiple echoing integrity tests with just one ICMP Error messages sent

by a targeted machine.

© 2 0 0 1 @ S T A K E , I N C .

28

Xprobe - ICMP Error Message Echoing Integrity

15:44:56.822182 ppp0 > 32.101.233.50.36196 > y.y.y.y.32132: udp 70 (DF)

(ttl 250, id 2279)

4500 0062 08e7 4000 fa11 d99b 2065 e932

yyyy yyyy 8d64 7d84 004e 5661 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000

15:44:57.192182 ppp0 < y.y.y.y > 32.101.233.50: icmp: y.y.y.y udp port

32132 unreachable Offending pkt: 32.101.233.50.36196 > y.y.y.y.32132:

udp 70

(DF) (ttl 234, id 2279, bad cksum e99b!) (DF) (ttl 233, id 40032)

4500 0038 9c60 4000 e901 575c yyyy yyyy

2065 e932 0303 f1b1 0000 0000 4500 0076

08e7 4000 ea11 e99b 2065 e932 yyyy yyyy

8d64 7d84 004e 0000

An example with AIX 3.2

IP Total Length Field Value Echoed is
118 while the Original was 98

IP Header Checksum Echoed
is Miscalculated

© 2 0 0 1 @ S T A K E , I N C .

29

Xprobe - ICMP Error Message Echoing Integrity

15:47:25.342182 ppp0 > 32.101.233.50.53783 > y.y.y.y.32132: udp 70 (DF)

(ttl 250, id 57568)

4500 0062 e0e0 4000 fa11 1dad 2065 e932

yyyy yyyy d217 7d84 004e 2db9 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000

15:47:25.652182 ppp0 < y.y.y.y > 32.101.233.50: icmp: y.y.y.y udp port

32132 unreachable Offending pkt: 32.101.233.50.53783 > y.y.y.y.32132:

udp 70 (DF) (ttl 238, id 57568) (ttl 241, id 61090)

4500 0038 eea2 0000 f101 5925 yyyy yyyy

2065 e932 0303 7f59 0000 0000 4500 004e

e0e0 4000 ee11 29c1 2065 e932 yyyy yyyy

d217 7d84 004e 2db9

An example with OpenBSD 2.8

IP Total Length Field Value Echoed is
20 Bytes less than the Original

© 2 0 0 1 @ S T A K E , I N C .

30

Xprobe - Precedence Bits Issues

Each IP Datagram has an 8-bit field called the “TOS Byte”, which represents the

IP support for prioritization and Type-of-Service handling.

The “TOS Byte” consists of three fields.

The “Precedence field”, which is 3-bit long, is intended to prioritize the IP

Datagram. It has eight levels of prioritization.

The second field, 4 bits long, is the “Type-of-Service” field. It is intended to

describe how the network should make tradeoffs between throughput, delay,

reliability, and cost in routing an IP Datagram.

The last field, the “MBZ” (must be zero), is unused and must be zero. Routers

and hosts ignore this last field. This field is 1 bit long.

MBZTOSPrecedence

0 3 4 51 2 6 7

© 2 0 0 1 @ S T A K E , I N C .

31

Xprobe - Precedence Bits Issues

RFC 1812 Requirements for IP Version 4 Routers:

"4.3.2.5 TOS and Precedence

ICMP Source Quench error messages, if sent at all, MUST have their IP

Precedence field set to the same value as the IP Precedence field in the packet

that provoked the sending of the ICMP Source Quench message. All other ICMP

error messages (Destination Unreachable, Redirect, Time Exceeded, and

Parameter Problem) SHOULD have their precedence value set to 6

(INTERNETWORK CONTROL) or 7 (NETWORK CONTROL). The IP Precedence

value for these error messages MAY be settable".

Linux Kernel 2.0.x, 2.2.x, 2.4.x will act as routers and will set their Precedence

bits field value to 0xc0 with ICMP error messages. Networking devices that will

act the same will be Cisco routers based on IOS 11.x-12.x and Foundry

Networks switches.

© 2 0 0 1 @ S T A K E , I N C .

32

Xprobe - ICMP Error Message Quoting Size

Each ICMP error message includes the IP Header and at least the first 8

data bytes of the datagram that triggered the error (the offending datagram);

more than 8 bytes may be sent according to RFC 1122.

Most of the operating systems will quote the offending packet's IP Header

and the first 8 data bytes of the datagram that triggered the error. Several

operating systems and networking devices will echo more than 8 data bytes.

Which operating systems will quote more?

Linux based on Kernel 2.0.x/2.2.x/2.4.x, Sun Solaris 2.x, HPUX 11.x,

MacOS 7.x-9.x, Nokia FW boxes (and other OSs and several Networking

Devices) are good examples.

© 2 0 0 1 @ S T A K E , I N C .

33

Xprobe - ICMP Error Message Quoting Size
An example with Linux Kernel 2.4.6

15:47:47.729742 ppp0 > x.x.x.x.47612 > y.y.y.y.32132: udp 70 (DF) (ttl 250, id 121)

4500 0062 0079 4000 fa11 c32d xxxx xxxx

yyyy yyyy b9fc 7d84 004e 0aed 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000

15:47:47.889742 ppp0 < y.y.y.y > x.x.x.x: icmp: y.y.y.y udp port 32132 unreachable

Offending pkt: x.x.x.x.47612 > y.y.y.y.32132: udp 70 (DF) (ttl 242, id 121) [tos

0xc0] (ttl 245, id 45284)

45c0 007e b0e4 0000 f501 56f6 yyyy yyyy

xxxx xxxx 0303 ba40 0000 0000 4500 0062

0079 4000 f211 cb2d xxxx xxxx yyyy yyyy

b9fc 7d84 004e 0aed 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000

(1) Precedence Field Vale is 0xc0

UDP Header Information

(2) Data
Echoed

© 2 0 0 1 @ S T A K E , I N C .

34

Xprobe - Using Code Field Values Different Than Zero with

ICMP Echo Requests

When an ICMP code field value different than zero (0) is sent with an ICMP

Echo request message (type 8), operating systems that will answer our

query with an ICMP Echo reply message that are based on one of the

Microsoft based operating systems will send back an ICMP code field value

of zero with their ICMP Echo Reply. Other operating systems (and

networking devices) will echo back the ICMP code field value we were using

with the ICMP Echo Request.

The Microsoft based operating systems acts in contrast to RFC 792

guidelines which instruct the answering operating systems to only change

the ICMP type to Echo reply (type 0), recalculate the checksums and send

the ICMP Echo reply away.

© 2 0 0 1 @ S T A K E , I N C .

35

Xprobe - TOS Echoing

RFC 1349 defines the usage of the Type-of-Service field with the ICMP

messages. It distinguishes between ICMP error messages (Destination

Unreachable, Source Quench, Redirect, Time Exceeded, and Parameter

Problem), ICMP query messages (Echo, Router Solicitation, Timestamp,

Information request, Address Mask request) and ICMP reply messages (Echo

reply, Router Advertisement, Timestamp reply, Information reply, Address Mask

reply).

Simple rules are defined:

 An ICMP error message is always sent with the default TOS (0x0000)

 An ICMP request message may be sent with any value in the TOS field.

 An ICMP reply message is sent with the same value in the TOS field as was

used in the corresponding ICMP request message.

Some operating systems will ignore RFC 1349 when sending ICMP echo reply

messages, and will not send the same value in the TOS field as was used in the

corresponding ICMP request message.

© 2 0 0 1 @ S T A K E , I N C .

36

Xprobe - TOS Echoing
An example with Microsoft Windows 2000

17:13:13.081831 ppp0 > x.x.x.x > y.y.y.y: icmp: echo request (DF)

[tos 0x6,ECT] (ttl 250, id 2779)

4506 0044 0adb 4000 fa01 a9a9 xxxx xxxx

yyyy yyyy 087b 2fff a51e 2267 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000

17:13:13.231831 ppp0 < y.y.y.y > x.x.x.x.175: icmp: echo reply (DF) (ttl

115, id 59514)

4500 0044 e87a 4000 7301 5310 yyyy yyyy

xxxx xxxx 0000 387a a51e 2267 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000Precedence Bits Value = 0

Code Field = 0

© 2 0 0 1 @ S T A K E , I N C .

37

Xprobe - The Rest

DF Bit

Will the DF Bit will be set with a reply ICMP message of any kind?

IP Time-To-Live

IP Time-To-Live Field Value with both ICMP Echo Requests (and ICMP Error

Messages) and with ICMP Echo Replies.

DF Bit Echoing

What will happen if we will set the DF bit with an offending packet that will

trigger an ICMP error message from a targeted machine?

Will the DF Bit be set in the ICMP error message IP Header?

IPID

Linux Kernels 2.4.0 – 2.4.4 will send ICMP Echo replies (and requests) with

an IP ID field value of 0.

© 2 0 0 1 @ S T A K E , I N C .

38

Xprobe - How Do We Start?

Query to a closed UDP port

ICMP Port Unreachable Error Message

Query to a definitely closed UDP port

No Reply - Query is blocked

Query to a definitely closed UDP port

ICMP Port Unreachable Error Message

© 2 0 0 1 @ S T A K E , I N C .

39

Xprobe - How Do We Start?

UDP datagram send to a closed UDP port.

Datagram sent with the DF Bit Set, and data

portion of the request should contain 70

bytes (or more).

1

No ICMP Error

Message Received

Host Filtered / Down

Future - Fail Over

Logic Might Be ICMP Query Only

ICMP Port Unreachable Error

Message Received

We Play

An example with the Static logic

 We query a definitely closed UDP port.

http://www.isi.edu/in-notes/iana/assignments/port-numbers

 An indicator is being given for the presence of a Filtering Device

 If no ICMP Error Message is received, we might use the ‘query only’ logic

 The size of the Offending UDP datagram is 70 bytes

© 2 0 0 1 @ S T A K E , I N C .

40

We Play

Precedence Bits ! = 0xc0 Precedence Bits = 0xc0

Linux Kernel 2.0.x/2.2.x/2.4.x Based

CISCO Equipment (Routers) with IOS 11.x-12..x

Extreme Networks Switches

Others

Xprobe - How Do We Start?
An example with the Static logic

Linux Kernel 2.0.x, 2.2.x, 2.4.x will act as routers and will set their

Precedence bits field value to 0xc0 with ICMP error messages. Networking

devices that will act the same will be Cisco routers based on IOS 11.x-12.x

and Extreme Networks switches.

© 2 0 0 1 @ S T A K E , I N C .

41

Xprobe - How Do We Start?
An example with the Static logic

Linux Kernel 2.0.x/2.2.x/2.4.x Based

CISCO Equipment (Routers) with IOS 11.x-12..x

Extreme Networks Switches

TTL ~ 255TTL ~ 64

Linux 2.0.x Linux Kernel 2.2.x/2.4.x based

Amount of Echoed Data from the

Offending Packet
Only the IP Header and 8

Data Bytes from the

Offending Packet is echoed

with the ICMP Port

Unreachable Error message

All the Offending Packet is

echoed with the ICMP Port

Unreachable Error message

CISCO Equipment (Routers) with IOS 11.x-12.x

Extreme Networks Switches

Linux Kernel 2.0.x/2.2.x/2.4.x

Based

UDP Checksum

Echoed = 0

Extreme Networks

Switches

UDP Checksum

Echoed is OK

CISCO Routers

IOS 11.x-12.x

© 2 0 0 1 @ S T A K E , I N C .

42

Xprobe - How Do We Start?
An example with the Static logic

IPID !=0 IPID = 0

Linux Kernel 2.4.0-2.4.4Linux Kernel 2.2.x/2.4.5

ICMP Echo Request
2

No Reply Reply

Linux Kernel 2.2.x/2.4.x based

A Filtering Device Prevents us from

Concluding

ICMP Echo mechanism is

Not Filtered

 Linux Kernel 2.4.0-2.4.4 will use 0 as its IPID field value with ICMP Query

replies (this was later fixed with Linux Kernels 2.4.5 and above).

 Linux Kernel 1.x does not set the Precedence field value to 0xc0 with

ICMP error messages.

© 2 0 0 1 @ S T A K E , I N C .

43

Example – www.kernel.org

© 2 0 0 1 @ S T A K E , I N C .

44

Example – www.kernel.org

S
e
n
t
D

a
ta

g
ra

m
s

Te
st

s
P
e
rf

o
rm

e
d

© 2 0 0 1 @ S T A K E , I N C .

45

Example – www.kernel.org

10/19-19:22:38.321716 213.8.199.165:14320 -> 204.152.189.113:32132

UDP TTL:250 TOS:0x0 ID:33305 IpLen:20 DgmLen:98 DF

Len: 78

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00

10/19-19:22:38.681716 204.152.189.113 -> 213.8.199.165

ICMP TTL:240 TOS:0xC0 ID:60235 IpLen:20 DgmLen:126

Type:3 Code:3 DESTINATION UNREACHABLE: PORT UNREACHABLE

** ORIGINAL DATAGRAM DUMP:

213.8.199.165:14320 -> 204.152.189.113:32132

UDP TTL:238 TOS:0x0 ID:33305 IpLen:20 DgmLen:98

Len: 78

** END OF DUMP

00 00 00 00 45 00 00 62 82 19 40 00 EE 11 E3 B8 E..b..@.....

D5 08 C7 A5 CC 98 BD 71 37 F0 7D 84 00 4E 23 25 q7.}..N#%

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00

(2
)

E
x
tr

a
 D

a
ta

 E
ch

o
e
d

(1) Precedence Bits Value = 0xC0(3) TTL

© 2 0 0 1 @ S T A K E , I N C .

46

Example – www.kernel.org

10/19-19:22:38.681716 213.8.199.165 -> 204.152.189.113

ICMP TTL:250 TOS:0x6 ID:54019 IpLen:20 DgmLen:68 DF

Type:8 Code:123 ID:23678 Seq:38447 ECHO

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

10/19-19:22:39.031716 204.152.189.113 -> 213.8.199.165

ICMP TTL:240 TOS:0x6 ID:60236 IpLen:20 DgmLen:68

Type:0 Code:123 ID:23678 Seq:38447 ECHO REPLY

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

Linux Based on Kernel 2.2.x/2.4.5+

Time Elapsed ~700ms

(4) IP ID != 0

ICMP Echo Request sent with ICMP Code Field set
to a value != 0

DF Bit is Set

© 2 0 0 1 @ S T A K E , I N C .

47

Xprobe - OS Identification List (Static)

 Microsoft Windows 95

 Microsoft Windows 98

 Microsoft Windows 98 SE

 Microsoft Windows ME

 Microsoft Windows NT4 SP3 and Below

 Microsoft Windows NT4 SP4 and UP

 Microsoft Windows 2000 (including SP1 and SP2)

 Microsoft Windows XP

© 2 0 0 1 @ S T A K E , I N C .

48

Xprobe - OS Identification List (Static)

 Linux Kernel 2.0.x

 Linux Kernel 2.2.x (and 2.4.5+)

 Linux Kernel 2.4.0 – 2.4.4

 Sun Solaris 2.3 – 2.8

 Sun OS 4.x

 HPUX 10.x, 11.x

 MacOS 7.x-9.x

 AIX 3.x, 4.x

 Novell Netware

© 2 0 0 1 @ S T A K E , I N C .

49

Xprobe - OS Identification List (Static)

 FreeBSD 2.x - 4.1, 4.1 - 4.3, 5.0 (future)

 BSDI 2.x, 3.x, 4.x

 NetBSD 1.x, 1.2.x, 1.3.x, 1.4.x, 1.5.x

 OpenBSD 2.1-2.3, 2.4-2.5, 2.6-2.9

 Ultrix

 OpenVMS

 DGUX / Compaq Tru64

 IBM OS/390

© 2 0 0 1 @ S T A K E , I N C .

50

Xprobe - OS Identification List (Static)

 NFR Appliance

 Cabletron SSR 8000

 Cisco Routers with IOS 11.x-12.x

 Extreme Networks Switches

© 2 0 0 1 @ S T A K E , I N C .

51

Xprobe - The Signature Based Approach

 The initiation of queries with the static version of Xprobe (v0.0.x)

is done according to the decision tree.

 Initiation of queries with the Signature based version of Xprobe

(v0.x) currently has a certain logic.

The Logic Of Initiation of Queries

© 2 0 0 1 @ S T A K E , I N C .

52

Xprobe - The Signature Based Approach

UDP Query Sent to

a closed UDP port

ICMP Echo Request

Processing of Reply

ICMP Timestamp

Request

Processing of Reply

ICMP Address Mask

Request

Processing of Reply

ICMP Information

Request

Processing of Reply

If Needed

If Needed

If Needed

If Needed

Includes Extra Tests

The Logic Of Initiation of Queries

© 2 0 0 1 @ S T A K E , I N C .

53

Xprobe - The Signature Based Approach

In the future we will initiate queries according to specific differentiations.

This means that if we receive the exact response for our offending UDP query

that matches two operating systems, for example, we will not automatically

send an ICMP Timestamp request, but we will compare the two signatures in

our database and look for the exact query that will give us the ability to

differentiate between the two. This way we save bandwidth, and make the

fingerprinting/manual detection harder.

With more than two matches for a response we will another algorithm/decision

logic.

The Logic Of Initiation of Queries

UDP Query Sent to

a closed UDP port

OS z

OS t

OS z

OS t

Query Choosed

[After comparison]

Comparing OSs

Signatures in the

DB

Lookup for a match in

the Signature DB

© 2 0 0 1 @ S T A K E , I N C .

54

Xprobe - The Signature Based Approach

platform: "Some OS v.1.2-1.3"

udptest:0xc0:8:BAD:<64:0:20+:FLP:0xc0:BAD:BAD

udptest1:0xd8:8:BAD:<64:0:20+:FLP:0xc0:BAD:BAD

icmpecho:ZERO:0xc0:<64:ZERO:FLP:0x40:BAD

icmpts: yes:<64:BAD:BAD

icmpaddr: no

icmpinforeq: no

The signature of an OS comprises of six tests, from whom five are different

tests (udptest, udptest1, icmpecho, icmpts, icmpaddr, icmpinforeq).

The Signature Base

© 2 0 0 1 @ S T A K E , I N C .

55

Xprobe - The Signature Based Approach

udptest:<Precedence_Bits>:<Data_Bytes_Echoed>:<UDP_Check

sum_Echoed>:<TTL>:<IP_ID>:<IP_Total_Length_Echoed>:<IP_O

ff_Bits>:<DF_Bit>:<IP_Header_Checksum_Echoed>:<IP_ID_Ech

oed>

udptest:<value-

bitmask>:<value>:<ZERO|BAD|GOOD>:<(=|<|>)<value>:<ZERO|O

K>:<value>(+|-

):<FLP|OK>:<0|OK>:<ZERO|BAD|GOOD>:<ZERO|BAD|GOOD>

udptest

© 2 0 0 1 @ S T A K E , I N C .

56

Xprobe - The Signature Based Approach

icmpecho:<ICMP_Code_In_ICMP_Reply>:<Precedence_Bits>:<TT

L>:<IP_ID>:<IP_Off_Bits>:<DF_Bit>

Udptest:<ZERO|OK>:<bitmask>:<(<|=|>)<value>:<ZERO|OK:0|O

K>:<bitmask>:<NO|YES>

icmpecho

© 2 0 0 1 @ S T A K E , I N C .

57

Xprobe - The Signature Based Approach

icmpaddr:<Answer?>:<TTL>:<IP_ID>:<DF_Bit>

icmpaddr:<YES|NO>:<(<|=|>)<value>:<ZERO|OK>:<No|YES>

icmpts, icmpaddrreq, icmpinfo

© 2 0 0 1 @ S T A K E , I N C .

58

Xprobe - More Examples
www.netbsd.org

© 2 0 0 1 @ S T A K E , I N C .

59

Xprobe - More Examples
www.netbsd.org

© 2 0 0 1 @ S T A K E , I N C .

60

Xprobe - More Examples
www.net-security.org

© 2 0 0 1 @ S T A K E , I N C .

61

Xprobe - More Examples
www.net-security.org

© 2 0 0 1 @ S T A K E , I N C .

62

Xprobe - More Examples
www.alldas.de

© 2 0 0 1 @ S T A K E , I N C .

63

Xprobe - More Examples
www.alldas.de

© 2 0 0 1 @ S T A K E , I N C .

64

Xprobe - More Examples

IP ID of the Offending Packet

is not Echoed Correctly

Echoing Integrity Check

FreeBSD 2.x - 4.1.1 Other

IP ID of the Offending Packet is

Echoed Correctly

UDP Checksum of the

Offending Packet Echoed = 0

Echoing Integrity Check

FreeBSD 4.1.1 - 4.3

FreeBSD 5.0

Other

UDP Checksum of the

Offending Packet Echoed ! = 0

TTL ~ 255 TTL ~ 64

FreeBSD 4.1.1-4.3 FreeBSD 5.0

Already IDENTIFIED

No reply for an ICMP Information Request

Echoing Integrity Check

IP Header Checksum Echoed = 0 IP Header Checksum Echoed !=0

NetBSD 1.3 - 1.3I

Big Endian

Other

www.alldas.de

© 2 0 0 1 @ S T A K E , I N C .

65

Xprobe - More Examples
www.alldas.de

10/19-19:14:00.871716 213.8.199.165:24493 -> 66.21.117.5:32132

UDP TTL:250 TOS:0x0 ID:56241 IpLen:20 DgmLen:98 DF

Len: 78

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00

10/19-19:14:01.191716 66.21.117.5 -> 213.8.199.165

ICMP TTL:41 TOS:0x0 ID:49572 IpLen:20 DgmLen:56 DF

Type:3 Code:3 DESTINATION UNREACHABLE: PORT UNREACHABLE

** ORIGINAL DATAGRAM DUMP:

213.8.199.165:24493 -> 66.21.117.5:32132

UDP TTL:233 TOS:0x0 ID:56241 IpLen:20 DgmLen:98

Len: 78

** END OF DUMP

00 00 00 00 45 00 00 62 DB B1 40 00 E9 11 62 10 E..b..@...b.

D5 08 C7 A5 42 15 75 05 5F AD 7D 84 00 4E 00 00B.u._.}..N..

FreeBSD 5.0 (automatically supported by the 0.x version)

IPID Echoed OK

UDP Checksum 0

TTL < 64

© 2 0 0 1 @ S T A K E , I N C .

66

Xprobe - More Examples
www.kill.net

© 2 0 0 1 @ S T A K E , I N C .

67

Xprobe - More Examples
www.kill.net

© 2 0 0 1 @ S T A K E , I N C .

68

Xprobe - More Examples
www.kill.net

Xprobe - More Examples

10/19-18:59:00.911716 213.8.199.165:6314 -> 209.68.21.243:32132

UDP TTL:250 TOS:0x0 ID:54470 IpLen:20 DgmLen:98 DF

Len: 78

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00

10/19-18:59:01.211716 209.68.21.243 -> 213.8.199.165

ICMP TTL:238 TOS:0x0 ID:40233 IpLen:20 DgmLen:56 DF

Type:3 Code:3 DESTINATION UNREACHABLE: PORT UNREACHABLE

** ORIGINAL DATAGRAM DUMP:

213.8.199.165:6314 -> 209.68.21.243:32132

UDP TTL:238 TOS:0x0 ID:54470 IpLen:20 DgmLen:98

Len: 78

** END OF DUMP

00 00 00 00 45 00 00 62 D4 C6 40 00 EE 11 33 DE E..b..@...3.

D5 08 C7 A5 D1 44 15 F3 18 AA 7D 84 00 4E 00 00D....}..N..

FreeBSD 4.1.1 – 4.3 (automatically supported by the 0.x version)

IPID Echoed OK

UDP Checksum 0

TTL < 255

© 2 0 0 1 @ S T A K E , I N C .

69

Xprobe - Known Problems

 Signature Base Needs to Grow

 No ids evasion is done yet. packets are easy to fingerprint. once core

features developed, optional 'masking' of payload data will be done.

(ICMP echo request like the once produced with the ‘ping’ utility, DNS

queries etc).

 ICMP Echo request is sent with a code field != 0 (still nobody looks at

this parameter).

© 2 0 0 1 @ S T A K E , I N C .

70

Further Reading

ICMP Usage In Scanning, v3.0 by Ofir Arkin,
http://www.sys-security.com

X – Remote ICMP based OS Fingerprinting Techniques, by Fyodor Yarochkin and Ofir
Arkin,
http://www.sys-security.com

RFC 792: Internet Control Message Protocol,
http://www.ietf.org/rfc/rfc0792.txt

RFC 1122: Requirements for Internet Hosts - Communication Layers,
http://www.ietf.org/rfc/rfc1122.txt

RFC 1256: ICMP Router Discovery Messages,
http://www.ietf.org/rfc/rfc1256.txt

RFC 1349: Type of Service in the Internet Protocol Suite,
http://www.ietf.org/rfc/rfc1349.txt

RFC 1812: Requirements for IP Version 4 Routers,
http://www.ietf.org/rfc/rfc1812.txt

© 2 0 0 1 @ S T A K E , I N C .

71

Tools Used

Xprobe written by Fyodor Yarochkin & Ofir Arkin
http://www.sys-security.com
http://www.notlsd.net/xprobe

http://xprobe.sourceforge.net

tcpdump
http://www.tcpdump.org

Snort written by Marty Roesch
http://www.snort.org

